• Title/Summary/Keyword: Trichoderma harzianum.

Search Result 118, Processing Time 0.018 seconds

Biological Control of Garlic White Rot Accused by Sclereotium cepivorum and Sclereotium sp. Using Bacillus subtilis 122 and Trichoderma harzianum 23 (Bacillus subtilis 122와 Trichoderma harzianum 23에 의한 마늘 흑색썩음균핵병의 생물적 방제)

  • Lee Sang-Yeob;Lee Sang-Bum;Kim Yong-Ki;Hwang Soon-Jin
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.81-84
    • /
    • 2006
  • Trichoderma harzianum 23 WP and Bacillus subtilis 122 WP were formulated as antagonists of Sclerotium cepivorum and Sclerotium sp. of garlic white rot. In the field test, applications of Trichoderma harzianum WP and Bacillus subtilis WP reduced garlic white rot by Sclerotium cepivrum from 10.9% in the control to 4.1% and 6.2%, respectively at Taean. Also at Seosan, applications of Trichoderma harzianum 23 WP and Bacillus subtilis 122 WP reduced garlic white rot by Sclerotium sp. from 17.8% in the control to 1.2% and 2.6%, respectively. Treatment of Trichoderma harzianum 23 WP and Bacillus subtilis 122 WP increased garlic yield in two area. Therefore, Trichoderma harzianum 23 WP and Bacillus subtilis 122 WP have shown potential as biofungicides of garlic white rot in the two different pathogens.

Studies on Antagonism of Trichoderma Species to Fusrium oxysporum f. sp. fragariae V. Biological Control of Fusarium Wilt of Strawberry by a Mycoparasite, Trichoderma harzianum (딸기 시들음병균에 대한 Trichoderma속 균의 길항작용에 관한 연구 V. 중복기생균 Trichoderma harzianum에 의한 딸기 시들음병의 생물적 방제)

  • 문병주;정후섭;박현철
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.298-303
    • /
    • 1995
  • The biological control effect of Trichoderma harzianum on the Fusarium wilt of strawberry and several factors affecting on its efficacy were examined through pot experiments. T. harzianum grown on wheat barn, rice straw, rice hull, sawdust or barley straw was respectively incorporated into the pathogen-infected soil, and significantly suppressed the strawberry wilt caused by Fusarium oxysporum f. sp. fragariae. The wheat bran or rice straw culture of T. harzianum suppressed the disease incidence more effectively than other substrates for culture, decreasing it to 68% of the untreated control. The conidial suspension of T. harzianum alone or the suspension mixed with crab shell also effectively reduced the disease incidence. The control effectiveness of T. harzianum was high in acid soil (pH 3.5~5.5). In sandy loam soil, the disease incidences and population densities of the pathogen were decreased by the treatment of T. harzianum, while there was no significant effect of T. harzianum on the pathogen in loam soil.

  • PDF

New Report of Three Unrecorded Species in Trichoderma harzianum Species Complex in Korea

  • Jang, Seokyoon;Kwon, Sun Lul;Lee, Hanbyul;Jang, Yeongseon;Park, Myung Soo;Lim, Young Woon;Kim, Changmu;Kim, Jae-Jin
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.177-184
    • /
    • 2018
  • The genus Trichoderma (Hypocreaceae, Ascomycota) consists of globally distributed fungi. Among them, T. harzianum, one of the most commonly collected Trichoderma species, had been known as a polyphyletic or aggregate species. However, a total of 19 species were determined from the polyphyletic groups of T. harzianum. Thus, we explored Korean "T. harzianum" specimens that were collected in 2013-2014. These specimens were re-examined based on a recent study with translate elongation factor 1-alpha ($EF1{\alpha}$) sequences to reveal cryptic Trichoderma species in Korea. As a result, four different species, T. afroharzianum, T. atrobruneum, T. pyramidale, and T. harzianum, were identified. Except T. harzianum, the other three species have not been reported in Korea. In this work, we describe these species and provide figures.

Screening of Trichoderma Isolates as a Biological Control Agent against Ceratocystis paradoxa Causing Pineapple Disease of Sugarcane

  • Rahman, M.A.;Begum, M.F.;Alam, M.F.
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.277-285
    • /
    • 2009
  • In this study, dual culture, poison agar, and direct methods were used to assess the ability of Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433, and T. harzianum IMI-392434 to control Ceratocystis paradoxa, which causes the pineapple disease of sugarcane. The highest percentage inhibition of radial growth (PIRG) values were observed with T. harzianum IMI-392432 using two dual culture methods, 63.80% in Method I and 80.82% in Method II. The minimum colony overgrowth time was observed with T. harzianum IMI-392432 and the maximum was observed with T. pseudokoningii IMI-392431. Different concentrations of different day-old metabolites of Trichoderma isolates were tested against mycelial growth of C. paradoxa. The highest PIRG (84.685%) exhibited at 80% concentration of 30-day-old metabolites of T. harzianum IMI-392432 using the modified bilayer poison agar method. In the direct assay method the maximum mycelial growth weight (PIGW) was observed at the same concentration and the same day-old metabolites of T. harzianum IMI-392432. This study showed that Trichoderma isolates have a good antagonistic effect on C. paradoxa mycelial growth and T. harzianum IMI-392432 has the most potential to control the pineapple disease pathogen.

Use of Agrobacterium for the Genetic Transformation of Trichoderma harzianum (Trichoderma harzianum의 형질전환을 위한 Agrobacterium의 이용)

  • Park, Hee-Sung;Shin, Dong-Il
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.175-181
    • /
    • 2011
  • Effective Agrobacterium-mediated transformation of Trichoderma harzianum could be achieved using the $Al_2O_3$ particles-abraded mycelia pellets. Transformation efficiency, as percents for the number of hygromcin-resistant mycelia pellets out of total pellets tested, was about 20 in average for $Al_2O_3$ experiment. No transformed mycelium was obtained from the intact mycelia pellets. After second round of antibiotics selection, DNA integration of hygromycin resistant gene and the expression of target gene could be confirmed by PCR and RT PCR, respectively. This is the first report of Agrobacterium-mediated T. harzianum transformation.

Growth Competition between Trichoderma harzianum and Fusarium solani on a Plant Residue in Non-Sterile Soil (토양 식물 잔사에서 Trichoderma harzianum에 의한 식물 병원균 Fusarium solani의 성장 저해)

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.540-549
    • /
    • 2016
  • Plant residues serve as substrates for the proliferation and overwintering of plant pathogenic fungi in soil. Effects of the biocontrol fungus Trichoderma harzianum on the colonization of wheat straw by the plant pathogenic fungus Fusarium solani were investigated under different soil moisture regimes (-50 vs. -500 kPa) in non-sterile soil. T. harzianum ThzID1-M3 and/or F. solani were added along with wheat straw to non-sterile soils. ThzID1-M3, other Trichoderma species, and F. solani were monitored for a 21-day period using quantitative PCR. ThzID1-M3 reduced the colonization of F. solani on wheat straw (p < 0.05) under both moisture regimes, and F. solani reduced the colonization by ThzID1-M3 and other Trichoderma species (p < 0.05), thus suggesting competitive inhibition between ThzID1-M3 and F. solani. Colonization by ThzID1-M3 and generic Trichoderma was improved in the wet soil (p < 0.05), but colonization by F. solani did not differ between the two moisture conditions. Thus, the inhibitory effect of ThzID1-M3 was greater in the wet soil (p < 0.05). The growth competition between ThzID1-M3 and F. solani to colonize plant debris suggests that the biocontrol fungus T. harzianum may reduce the potential of the plant pathogen, F. solani, to survive and proliferate on crops.

Biological Control of Mulberry Root Knot Nematode Meloidogyne incognita by Trichoderma harzianum

  • Sukumar, J.;Padma, S.D.;Bongale, U.D.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Trichoderma harzianum-THN1 parasitising the egg masses of root knot nematode Meloidogyne incognita was isolated from galled mulberry roots and evaluated for its potential to control root knot disease. In pot experiments root galling was reduced and leaf yield increased significantly following soil treatment with T. harzianum-THN1. The extracts obtained from the soils inoculated with T. harzianum-THN1 drastically inhibited the hatching of nematode eggs and the effect was irreversible even after the eggs were transferred to fresh water. The fungus was equally effective in controlling the disease in nematode infested mulberry garden under field conditions which was significant over the most commonly used egg parasitic fungus Paecilomyces lilacinus. The disease reduction recorded with T. harzianum was on par with the plants treated with the nematicide Carbofuran. The results suggest that T. harzianum- THN1 could be used as a potent ecofriendly biocontrol agent against M. incognita in mulberry without any residual toxicity to silkworms. T. harzianum- THN1 can form an important component of integrated disease management package in mulberry cultivation.

Isozyme Analysis and Relationships Among Three Species in Malaysian Trichoderma Isolates

  • Siddiquee, Shafiquzzaman;Tan, Soon-Guan;Yusof, Umi-Kalsom
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1266-1275
    • /
    • 2010
  • Isozyme and protein electrophoresis data from mycelial extracts of 27 isolates of Trichoderma harzianum, 10 isolates of T. aureoviride, and 10 isolates of T. longibrachiatum from Southern Peninsular Malaysia were investigated. The eight enzyme and a single protein pattern systems were analyzed. Three isozyme and total protein patterns were shown to be useful for the detection of three Trichoderma species. The isozyme and protein data were analyzed using the Nei and Li Dice similarity coefficient for pairwise comparison between individual isolates, species isolate group, and for generating a distance matrix. The UPGMA cluster analysis showed a higher degree of relationship between T. harzianum and T. aureoviride than to T. longibrachiatum. These results suggested that the T. harzianum isolates had high levels of genetic variation compared with the other isolates of Trichoderma species.

In vitro Biological Control Against Trichoderma harzianum Using Antifungal Bacteria

  • Lee, Ho-Yong;Hyun, Soung-Hee
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.4
    • /
    • pp.441-446
    • /
    • 2000
  • Trichoderma harzianum is an aggressive causal agent of green mold disease on mushroom cultivation. Some bacterial strains isolated, from oyster mushroom compost in Wonju, were found to have in vitro antifungal activity against Trichoderma harzianum ATCC 6385, 6504, and our isolates Trichoderma spp. Y and G. Further in vitro antifungal studies on several strains of phytopathogenic fungi showed that all of 12 phytopathogenic fungal strains were significantly inhibited by the isolated antifungal bacteria in Petri dishes. Of these, KATB 99121 showed the broadest inhibiting effect and displayed as negative coagulase, negative sulfide production and rod shape. KATB 99121 was resistant to ampicillin, chlorampenicol, and kanamycin. Identification of isolates was determined by Biolog GN system, and KATB 99121 was identified as Photobacterium logei because of 96 probability, 0.65 similarity, and 4.97 disturbance. With electron microscopy, thin section of KATB 99121 strain revealed typical rod-like shaped cell (0.6-0.8${\mu}{\textrm}{m}$$\times$1.5-2.0${\mu}{\textrm}{m}$) with prokaryotic structure and organization.

  • PDF

Isolation and Morphological Characterization of Ttichoderma harzianum SJG-99721, a Powerful Biocontrol Agent (길항작용을 나타내는 Trichoderma harzianum SJG-99721의 분리 및 형태학적 특징)

  • 이호용;민봉희
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Species of Genus Trichoderma are commercially applied as biological control agents against fungal Pathogens. A powerful biocontrol agent, Trichoderma sp. SJG-99721 was isolated from 305 isolates by morphological characters, chitinase activities and antifungal activities against Phytophthora capsiei. The isolate was identified as Trichoderma harzianum from various features such as growth rate at $27^\circ{C}$, significant growth ratio of $27^\circ{C}$ to $17^\circ{C}$, amount of aerial mycelium, types of branching: system, and disposition patterns of phialide and phialospore. Trichoderma harzianum SJG-99721 have been shown to act as a powerful biological agent against fungal phytopathogens; Botrytis cinerea, Rhizoctonia solani, Phytophthora cryptogea, Phytophthora capsiei, Sclerotinia sclerotiorum, Mycoshaerella melonis, Alternaria sotani, Fusarium oxysporum, Collectotrichum gloesporioodes, Alternaria alternata, Phythium ultimum, Phytophthora drechsleri, Pyricularia grisea.