• Title/Summary/Keyword: Trichloroethylene

Search Result 340, Processing Time 0.029 seconds

Removal Mechanisms of BTEX Compounds by RO/NF Membrane Processes (RO/NF막 공정을 이용한 BTEX 물질의 제어 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.926-932
    • /
    • 2006
  • A series of bench-scale membrane filtration experiments were performed to systematically investigate the removal mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes for BTEX (benzene, toluene, ethylene, xylene), trichloroethylene (TCE) and tetrachloroethylene (PCE). The molecular weight of these organic compounds ranged from 78 to 166 dalton. The rejection of organic compounds by RO/NF membranes varied significantly from 59.6 to 99.2% depending on solute and membrane types. Specifically, experimental results demonstrated that the removal efficiency of RO/NF membranes increased as solute molecular characteristics such as W/L (molecular width/length) ${\times}$ $M_W$ (molecular weight) and octanol-water partition coefficient increased. This observation suggested that the rejection of small organic compounds by RO/NF membranes was determined by the combined effect of physical (molecular size and shape) and chemical (hydrophobicity) properties.

Removal of Halogenated Organic Compounds in Wastewater by Pervaporation (투과증발법을 이용한 폐수중의 미량 유기염소계 화합물의 제저)

  • 오부근;하성룡;하상태;이영무
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 1994
  • This study uses pervaporation process to separate small amount of organic trichloroethylene, chloroform and perchloroethylene from contaminated water, since chlorinated hydrocarbones are known to be cancer suspecting compounds. For the separation of small amount of halogenated organic compound dissolved in wastewater, pervaporation membranes should be polymers that possess affinity with orgnic compounds and hydrophobicity. We used polyisobutylene, polyetheramide and polydimethylsiloxane membranes. The degree of affinity between organics and polymers were measured by contact angle method. We had good separation results that separation factor ranged from 34 to 19100 and permeate flux was$19.7~140g/m^2hr$.

  • PDF

A Simple and Simultaneous Analysis of Volatile Halogenated Hydrocarbons in Indoor Air Using Personal Sampler

  • Jung, Won-Tae;Sohn, Dong-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.373-381
    • /
    • 1993
  • To understand the human exposure levels of volatile halogenated hydrocar-bons in ambient air, a new rapid and convenient analytical method for determination of the compounds in gaseous phase was evaluated and established. The method is based upon passsive diffusion to personal sampler containing adsorbent and solvent extraction followed by purge trap/ on-column cryof-ocusing method. A new method needs no special instrumentation for gas collection because it is based upon the passive diffusion principle. The typical chromatogram obtained in this study proved that rapid and simultaneous determination of target analytes was possible with good resolution. The developed method was successfully applied to determine the volatile halogenated hydrocarbons in indoor air and the values obtained by this new method were compared with those by direct suction method. The concentration of carbon tetrachloride, 1,1,2-trichloroethylene, chloroform showed the values below 400$\mug/m^3$ except the maximum of 1,513$\mug/m^3$ of chloroform. 1,1,1-Trichloroethane showed approximately 1,000 to 5,000$\mug/m^3$ range of diurnal fluctuation in indoor air.

  • PDF

Effects of Water Vapor, Molecular Oxygen and Temperature on the Photocatalytic Degradation of Gas-Phase VOCs using $TiO_2$Photocatalyst: TCE and Acetone

  • Kim, Sang-Bum;Jo, Young-Min;Cha, Wang-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.35-42
    • /
    • 2001
  • Recent development of photocatalytic degradation method that is mediated by TiO$_2$ is of interest in the treatment of volatile organic compounds(VOCs). In this study, trichloroethylene(TCE) and acetone were closely examined in a batch scale of photo-reactor as a function of water vapor, oxygen, and temperature. Water vapor inhibited the photocatalytic degradation of acetone, while there was an optimum concentration in TCE. A lower efficiency was found in nitrogen atmosphere than air, and the effect of oxygen on photocatalytic degradation of acetone was greater than on that of TCE. The optimum reaction temperature on photocatalytic degradation was about 45$^{\circ}C$ for both compounds. NO organic byproducts were detected for both compounds under the present experimental conditions. It was ascertained that the photocatalytic reaction in a batch scale of photo-reactor was very effective in removing VOCs such as TCE and acetone in the gaseous phase.

  • PDF

Development of an Apparatus for the Determination of In Vitro Metabolic Rate Constants of Volatile Organic Chemicals (휘발성 유기용매의 In vitro 대사속도 측정 장치의 개발)

  • Hwang, In-Young;Lee, Yoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.43-54
    • /
    • 1997
  • Species, doses and routes extrapolation can be sucessfully carried out by using a physiologically-based pharmacokinetic (PBPK) approach. And PBPK approach to assess risk of hazardous chemicals is reasonable whatever the exposure scenarios are happened. Both partitioning coefficients of chemical between tissue and blood and enzymatic metabolic rate constants are key parameters to build up the PBPK model. In this study, we tried to estimate in vitro metabolic rate constants using a special apparatus instead to measure the in vivo constants which are used to PBPK simulation since the in vitro tests are less expensive and more convenient than in vivo tests. For the purpose, we designed and tested the new system to measure continuously the headspace concentration of VOC. The newly designed system is composed with a diffusion chamber which generates gaseous substrate, a reaction vessel with a recirculating pump to establish a closed system, an autbmatic sampler from a gas phase, a gas chromatography to analyze the headspace. In addition, a cold water condenser is attached between the reaction vessel and pump to reduce the content of gaseous moisture which interferes with chemical analysis. To validate the newly developed methodology, in vitro metabolic rate constants of trichloroethylene (TCE) as a prototype VOC were estimated by simulating observed results with an ACSL program. The simulated results are consistent to those estimated by the other research groups. This finding suggests that our newly designed closed system may be a useful apparatus to estimate in vitro metabolic rate constants for VOC.

  • PDF

Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor (충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성)

  • Ryu, Sam-Gon;Park, Myung-Kyu;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.343-347
    • /
    • 2012
  • The decomposition behaviors of gaseous cyanides in non-thermal plasma-catalyst hybrid reactor have been investigated with the variation of discharge power, influent concentration of cyanide, humidity of air carrier and packed materials in the reactor. Destruction of cyanides by plasma only process was very difficult compared to that of trichloroethylene. But the destruction efficiencies of cyanides were dramatically improved through packing alumina or Pt/alumina bead in the plasma discharge region. From the results, it could be assumed that thermal catalytic effect is involved simultaneously with plasma in the reaction of cyanides destruction on the alumina or Pt/alumina packed plasma reactor.

Atmospheric Plasma Treatment on Copper for Organic Cleaning in Copper Electroplating Process: Towards Microelectronic Packaging Industry

  • Hong, Sei-Hwan;Choi, Woo-Young;Park, Jae-Hyun;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.71-74
    • /
    • 2009
  • Electroplated Cu is a cost efficient metallization method in microelectronic packaging applications. Typically in 3-D chip staking technology, utilizing through silicon via (TSV), electroplated Cu metallization is inevitable for the throughput as well as reducing the cost of ownership (COO).To achieve a comparable film quality to sputtering or CVD, a pre-cleaning process as well as plating process is crucial. In this research, atmospheric plasma is employed to reduce the usage of chemicals, such as trichloroethylene (TCE) and sodium hydroxide (NaHO), by substituting the chemical assisted organic cleaning process with plasma surface treatment for Cu electroplating. By employing atmospheric plasma treatment, marginally acceptable electroplating and cleaning results are achieved without the use of hazardous chemicals. The experimental results show that the substitution of the chemical process with plasma treatment is plausible from an environmentally friendly aspect. In addition, plasma treatment on immersion Sn/Cu was also performed to find out the solderability of plasma treated Sn/Cu for practical industrial applications.

Mechanism of TCE Removal with Foundry Sands and Design of Permeable ]Reactive Barriers (주물사의 TCE 제거 메커니즘과 반응벽체에의 적용가능성)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.143-157
    • /
    • 2002
  • Batch and column tests were conducted with common groundwater contaminants (i.e., trichloroethylene) to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron a common medium used in permeable reactive barriers. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminants, which may result in lower effluent concentrations of contaminants due to biodegradation. In general, permeable reactive barriers with the thickness of 1m can be constructed with many foundry sands to treat typical groundwater comtaminants provided the zero-valent iron content in the foundry sand is higher than 1%.

Characterization of a Newly Isolated cis-1,2-Dichloroethylene and Aliphatic Compound-Degrading Bacterium, Clostridium sp. Strain KYT-1

  • Kim, Eun-Sook;Nomura, lzumi;Hasegawa, Yuki;Takamizawa, Kazuhiro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.553-556
    • /
    • 2006
  • A cis-1,2-dichloroethylene (cis-DCE)-degrading anaerobic bacterium, Clostridium sp. strain KYT-1, was isolated from a sediment sample collected from a landfill site in Nanji-do, Seoul, Korea. The KYT-1 strain is a gram-positive, endospore-forming, motile, rod-shaped anaerobic bacterium, of approximately $2.5{\sim}3.0\;{\mu}m$ in length. The degradation of cis-DCE is closely related with the growth of the KYT-1 strain, and it was stopped when the growth of the KYT-1 strain became constant. Although the pathway of cis-DCE degradation by strain KYT-1 remains to be further elucidated, no accumulation of the harmful intermediate, vinyl chloride (VC), was observed during anaerobic cis-DCE degradation. Strain KYT-1 proved able to degrade a variety of volatile organic compounds, including VC, isomers of DCE (1,1-dichloroethylene, trans-1,2-dichloroethylene, and cis-DCE), trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane. Strain KYT-1 degraded cis-DCE at a range of temperatures from $15\;to\;37^{\circ}C$, with an optimum at $30^{\circ}C$, and at a pH range of 5.5 to 8.5, with an optimum at 7.0.

Development and Application of a Chemical Ranking and Scoring System for the Management of Endocrine Disrupting Chemicals (환경성 내분비계장애물질(EDCs)의 우선관리순위 결정법 개발 및 적용)

  • Lim, Miyoung;Park, Ji Young;Ji, Kyunghee;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.76-89
    • /
    • 2018
  • Background: Exposure to endocrine disrupting chemicals (EDCs) has been considered one of the main causes of a range of endocrine diseases in modern society. An EDC priority list considering exposure, toxicity, and societal concern should be established for EDC management. Methods: The chemical ranking and scoring (CRS) system for EDCs was based on exposure, toxicity,and societal concern. The exposure score system was based on usage, circulation volume, bioaccumulation, and detection in consumer products. The toxicity score system was based on carcinogenicity and reproductive and developmental toxicity. The societal concern score system was based on domestic or international regulations and mass media reports. Results: A total of 165 EDCs were considered in the CRS system. The top-five priority EDCs were Bis(2-ethylhexyl) phthalate (DEHP), Benzene, Bisphenol A, Dibutyl phthalate (DBP) and Trichloroethylene. Phthalates, bisphenols and parabens were identified as priority chemical groups. Conclusion: We developed a CRS system for EDCs to identify priority EDCs for management. This will be a foundation to provide an EDC management plan based on scientific decision-making.