Browse > Article

Characterization of a Newly Isolated cis-1,2-Dichloroethylene and Aliphatic Compound-Degrading Bacterium, Clostridium sp. Strain KYT-1  

Kim, Eun-Sook (United Graduate School of Agricultural Science, Gifu University)
Nomura, lzumi (Faculty of Applied Biological Sciences, Gifu University)
Hasegawa, Yuki (Faculty of Applied Biological Sciences, Gifu University)
Takamizawa, Kazuhiro (United Graduate School of Agricultural Science, Gifu University,Faculty of Applied Biological Sciences, Gifu University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.6, 2006 , pp. 553-556 More about this Journal
Abstract
A cis-1,2-dichloroethylene (cis-DCE)-degrading anaerobic bacterium, Clostridium sp. strain KYT-1, was isolated from a sediment sample collected from a landfill site in Nanji-do, Seoul, Korea. The KYT-1 strain is a gram-positive, endospore-forming, motile, rod-shaped anaerobic bacterium, of approximately $2.5{\sim}3.0\;{\mu}m$ in length. The degradation of cis-DCE is closely related with the growth of the KYT-1 strain, and it was stopped when the growth of the KYT-1 strain became constant. Although the pathway of cis-DCE degradation by strain KYT-1 remains to be further elucidated, no accumulation of the harmful intermediate, vinyl chloride (VC), was observed during anaerobic cis-DCE degradation. Strain KYT-1 proved able to degrade a variety of volatile organic compounds, including VC, isomers of DCE (1,1-dichloroethylene, trans-1,2-dichloroethylene, and cis-DCE), trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane. Strain KYT-1 degraded cis-DCE at a range of temperatures from $15\;to\;37^{\circ}C$, with an optimum at $30^{\circ}C$, and at a pH range of 5.5 to 8.5, with an optimum at 7.0.
Keywords
cis-1,2-dichloroethylene; anaerobic degradation; halogenated aliphatic compounds; strain KYT-1;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Humayra, A. S., Y. Hasegawa, I. Nomura, Y. C. Chang, T. Sato, and K. Takamizawa (2005) Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnol. Bioprocess Eng. 10: 40-46   과학기술학회마을   DOI   ScienceOn
2 Scholz-Muramatsu, H., A. Neumann, M. Messmer, E. Moore, and G. Diekert (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163: 48-56   DOI
3 Maymo-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane. Science 276: 1568-1571   DOI   ScienceOn
4 Ottow, J. C. (1968) Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction in Aerobacter aerogenes. Z. Allg. Mikrobiol. 8: 441-443   DOI
5 Bradley, P. M. and F. H. Chapelle (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environ. Sci. Technol. 30: 2084-2086   DOI   ScienceOn
6 Bradley, P. M., F. H. Chapelle, and D. R. Lovley (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105
7 Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312
8 Hata, J., N. Miyata, E. S. Kim, K. Takamizawa, and K. Iwahori (2004) Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. J. Biosci. Bioeng. 97: 196-201
9 Hobbie, J. E., R. J. Daley, and S. Jasper (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228
10 Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89: 489-491   DOI   ScienceOn
11 Hashimoto, A., K. Iwasaki, N. Nakasugi, M. Nakajima, and O. Yagi (2002) Degradation pathways of trichloroethylene and 1,1,1-trichloroethane by Mycobacterium sp. TA27. Biosci. Biotechnol. Biochem. 66: 385-390   DOI   ScienceOn
12 Bromfield, S. M. (1954) The reduction of iron oxide by bacteria. J. Soil Sci. 5: 129-139   DOI
13 Pfenning, N., F. Widdel, and H. G. Truper (1992) The dissimilatory sulfate-reducing bacteria. pp. 926-940. In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.). The Prokaryotes. 2nd ed., Vol. 1. Springer- Verlag, New York, NY, USA
14 Verschueren, K. (1983) Handbook of Environmental Data on Organic Materials. 2nd ed., Van Nostrand Reinhold Co., New York, NY, USA
15 Sung, Y., K. M. Ritalahti, R. P. Apkarian, and F. E. Loffler (2006) Quantitative PCR confirms purity of Strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 72: 1980-1987   DOI   ScienceOn
16 Quinton, G. E., R. J. Buchanan, D. E. Ellis, Jr., and S. H. Shoemaker (1997) A method to compare groundwater cleanup technologies. Remediation 8: 7-16
17 He, J., K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424: 62-65   DOI   ScienceOn
18 Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722-736   DOI   ScienceOn
19 Muller, J. A., B. M. Rosner, G. Von Abendroth, G. Meshulam- Simon, P. L. McCarty, and A. M. Spormann (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl. Environ. Microbiol. 70: 4880- 4888   DOI   ScienceOn
20 Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29: 241-243   DOI
21 Zeikus, J. G. (1977) The biology of methanogenic bacteria. Bacteriol. Rev. 41: 514-541
22 Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A. J. B. Zehnder (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169: 313-321   DOI
23 Suyama, A., R. Iwakiri, K. Kai, T. Tokunaga, N. Sera, and K. Furukawa (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci. Biotechnol. Biochem. 65: 1474-1481   DOI   ScienceOn
24 Bradley, P. M. and F. H. Chapelle (1998) Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4: 81-87   DOI   ScienceOn
25 Bradley, P. M. and F. H. Chapelle (1997) Kinetics of DCE and VC mineralization under methanogenic and Fe(III)- reducing conditions. Environ. Sci. Technol. 31: 2692-2696   DOI   ScienceOn
26 Gerritse, J., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M. D. Collins, and J. C. Gottschal (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165: 132-140   DOI