• Title/Summary/Keyword: Tribological Property

Search Result 64, Processing Time 0.024 seconds

Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine (수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF

A Study on Tribological Characteristics for High Temperature Alloy Steel with Ni-Cr-Mo-V (Ni-Cr-Mo-V 내열강의 마찰마모 특성 연구)

  • Lim, Ho Gi;Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.284-291
    • /
    • 2016
  • High temperature alloy steel such as Ni-Cr-Mo-V material has excellent properties of high strength and high heating resistance. It has been used for several military weapon components such as gun barrel of a warship, turbine rotor and turbine disk for nuclear power plant. Being curious about this material required excellent wear resistance and durability in extreme environmental conditions. A dry wear test at the ambient air and Ar gas conditions in the room temperature were performed in this study. What's more a lubricant wear test at different temperature was conducted. In addition that DLC was coated on Ni-Cr-Mo-V alloy steel substrate with a thickness of $3{\mu}m$, a property of it was compare with lubricant conditions. All the coefficient of friction and wear volume, comparing with DLC coated specimens. The test parameters were selected as follows: 10 N for normal load; 80 rpm for sliding wear speed; and 300 m for the sliding wear distance.

Biomimetically Engineered Polymeric Surfaces for Micro-scale Tribology

  • Singh R. Arvind;Kim Hong-Joon;Kong Ho-Sung;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.14-17
    • /
    • 2006
  • In this paper, we report on the replication of surface topography of natural leaf of Lotus onto thin polymeric films using a capillarity-directed soft lithographic technique. PDMS molds were used to replicate the surface. The replication was carried out on poly(methyl methacrylate) (PMMA) film coated on silicon wafer. The patterns so obtained were investigated for their friction properties at micro-scale using a ball-on-flat type micro-tribo tester, under reciprocating motion. Soda lime balls (1 mm diameter) were used as counterface sliders. Friction tests were conducted at a constant applied normal load of $3000{\mu}N$ and speed of 1mm/s. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non patterned sample (PMMA thin film). The reduced real area of contact projected by the surfaces was the main reason for their enhanced friction property.

Mechanical Property Evaluation of Diamond-like Carbon Coated by PE-CVD (PE-CVD방법을 이용한 DLC 박막의 기계적특성 평가)

  • Kang Seog Ju;Yi Jin-Woo;Kim Seock Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.368-376
    • /
    • 2003
  • In this research, DLC thin films are produced as several hundred nm thickness by PE-CVD method. And then these thin films are estimated tribological characteristics to find out useful possibilities as a protecting film for high-quality function and life extension at MEMs by mechanical properties observation . These are measured thickness and residual stress of DLC coating. Compared after measuring friction coefficient, adhesion force, hardness, cohesive force of coating films. As results all test, we can decide several conclusions. First, friction coefficient decreased, as the load increased. otherwise, friction coefficient increased, as thickness of coating film increased under low load$(1\~50mN)$. Secod, adhesion force increased as thickness of coating films. Third, hardness of coating film is affected by substrate coating film when it is less than thickness of 300nm and it has general hardness of DLC coating film when it is more than thickness of 500nm. Fourth, cohesive force of coating film is complexly affected by hardness, adhesion force, residual stress, etc.

  • PDF

Dependence of Sliding Friction Properties on the Angle of Laser Surface Texturing for a Grooved Crosshatch Pattern Under Grease Lubrication (그리스 윤활하에서 레이저 표면 텍스쳐링된 그루브 빗살무늬 패턴의 사잇각에 따른 미끄럼 마찰특성 평가)

  • Kong, Minseon;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.261-266
    • /
    • 2022
  • Notably, laser surface patterning facilitates tribological applications under lubricated sliding contacts. Consequently, a special pattern that can reduce the coefficient of friction under contact is considered necessary for improved machine efficiency. However, inappropriate pattern designs produce higher friction coefficients and cannot reduce friction. In this study, we use cast iron pins as specimens to investigate their friction and wear characteristics. Moreover, we experimentally investigate the correlation between the friction reduction effect and the design of groove crosshatch patterns fabricated with various angles and widths. We conduct a friction test using a pin-on-disc type tribometer under grease lubrication to study the friction reduction effect of the specimens, and we observe that the average coefficient of friction changes with the crosshatch angle and width. The experiment reveals that grooved crosshatch specimens with a crosshatch angle of 135°maximize friction reduction. The coefficient of friction of the groove specimens with a width of 120 ㎛ is lower than that of the specimens with a width of 200?. The friction reduction effect of the width of the groove is attributed to the density of the groove pattern. Thus, grooved crosshatch patterns can be designed to maximize friction reduction, and the friction property of a grooved crosshatch pattern is found to be related to its width and angle.

A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions (마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.

The effect of microstructure of electrical discharge machinable silicon nitride on wear resistance (방전가공용 질화규소의 미세조직이 내마모에 미치는 영향)

  • 이수완;김성호;이명호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Silicon nitride is hard and tough ceramic material. Hereby, mechanical machinability is very poor. It has also high electrical resistance. Silicon nitride of extremely high electrical resistivity becomes conductive ceramic composite by adding 30 wt% TiN. Ceramics with high electrical conductivity can be electrical discharge machined. Using by the Electrical Discharge Machining (EDM) technique. $Si_3N_4-TiN$ ceramic composite with high electrical conductivity is utilized to make metal working tool. These tool materials have severe wear problem as well as oxidation. Post HIP processing after sintering $Si_3N_4-TiN$ ceramic composites was performed. The tribological property of $Si_3N_4-TiN$ composite as a function of content of TiN was investigated in air, at room temperature. The hardness, fracture toughness, and flexural strength were compared with the wear volume. SEM observation of wear tracks can make an explanation of wear mode of $Si_3N_4-TiN$ composite.

  • PDF

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Development of methodology for evaluating tribological properities of Ion-implanted steel (이온 주입한 강의 미시적 마모 튼성의 평가)

  • MOON, Bong-Ho;CHOI, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.146-154
    • /
    • 1997
  • Ion implantation has been used successfully as a surface treatment technology to improve the wear. fatigue and corrosion resistances of materials. A modified surface layer by ion implantation is very thin(under 1 m), but it has different mechanical properties from the substrate. It has also different wear characteristics. Since wear is a dynamic phenomenon on interacting surfaces with relative motion, an effective method for investigtating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. The change of wear properties produces the transition of wear mode. To know the microscopic wear mechanism of this thin layer, it is very important to clarify its microscopic wear mode. In this paper, using the SEM and AFM Rribosystems as in-situ system, the microscopic wear of Ti ion-implanted 1C-3Cr steel, a material for roller in the cold working process, was investigated in repeated sliding. The depth of wear groove and the speciffc wear amount were changed with transition of microscopic wear mode. The depth of wear groove with friction cycles in AFM tribosystem and specific wear amount of Ti ion-implanted 1C-3Cr steel were less about 2-3 times than those of non-implanted 1C-3Cr steel. The microscopic wear mechansim of Ti ion-implanted 1C-3Cr steel was also clarified. The microscopic wear property was quantitatively evaluated in terms of microscopic wear mode and specific wear amount.

  • PDF

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication (MEMS 공정에서의 자기 조립 단분자층 기술 응용)

  • Woo-Jin Lee;Seung-Min Lee;Seung-Kyun Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.