• 제목/요약/키워드: Triboelectric series

검색결과 6건 처리시간 0.022초

SnO2 마찰층을 이용한 마찰 대전 소자의 에너지 생산성 향상 (Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator)

  • 이노호;신재록;유지은;유동훈;구본율;이성우;안효진;최병준
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.321-325
    • /
    • 2015
  • The triboelectric property of a material is important to improve an efficiency of triboelectric generator (TEG) in energy harvesting from an ambient energy. In this study, we have studied the TEG property of a semiconducting $SnO_2$ which has yet to be explored so far. As a counter triboelectric material, PET and glass are used. Vertical contact mode is utilized to evaluate the TEG efficiency. $SnO_2$ thin film is deposited by atomic layer deposition on bare Si wafer for various thicknesses from 5.2 nm to 34.6 nm, where the TEG output is increased from 13.9V to 73.5V. Triboelectric series are determined by comparing the polarity of output voltage of 2 samples among $SnO_2$, PET, and glass. In conclusion, $SnO_2$, as an intrinsic n-type material, has the most strong tendency to be positive side to lose the electron and PET has the most strong tendency to be negative side to get the electron, and glass to be between them. Therefore, the $SnO_2$-PET combination shows the highest TEG efficiency.

Fabrication and Characterization of Triboelectric Energy Harvester

  • Sung, Tae-Hoon;Lee, Jun Young;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.631-631
    • /
    • 2013
  • Battery has major drawbacks including its size and life expectancy, and environmental problem. As an alternative, energy harvesting is emerging as a potential solution to replace battery along with more energy-efficient IT devices. The idea of harnessing energy from our living environment is sustainable, semi-permanent, and eco-friendly. Also, unlike battery, energy harvester does not require much space to store energy. Therefore, energy harvesting can provide a better source of power for small, portable, and wireless devices. Among various ways of harvesting energy from our surroundings, triboelectricity is chosen due to its potential to be miniaturized, and efficient. Triboelectric effect occurs as two different materials with different polarity of charge separation come into contact through friction, and then become separated so that electric potential difference is achieved. In this research, such characteristic of triboelectricity is used as a way to convert ambient mechanical energy into electric energy.Series of recent researches have shown promising results that the triboelectric energy harvester can be simple and cost effective. However, sufficient electricity level required to operate mobile devices has not yet been achieved.In this research, our group focuses on the design and optimization of triboelectric energy harvesting device to enhance its output. By using maskless lithography to pattern Kapton film and silicon substrate, which is used as a mold for PDMS thin layer, and sputtering metal electrodes on each side, we fabricate and demonstrate different designs of triboelectric energy harvester that utilizes the contact electrification between a polymer thin film and a metal thin foil. In order to achieve optimized result, the output voltage and current are measured under diverse conditions, which include different surface structure and pattern, material, and the gap between layers.

  • PDF

AAO 두께 및 표면 형상에 따른 고체-고체 마찰 대전 기반 에너지 하베스팅 발전 성능에 관한 연구 (A Study on the Output Performance of Solid-solid Triboelectric Energy Harvesting Depending on the Surface Morphology and Thickness of AAO)

  • 이광석;황운봉
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.224-229
    • /
    • 2023
  • 최근 각종 전자기기의 소형화와 웨어러블 디바이스의 수요가 증가함에 따라 IT 기기들의 나노화가 진행되는 추세이며, 이에 따른 배터리의 크기 및 용량 등의 한계를 극복하기 위하여 에너지 하베스팅 기술인 마찰 대전에 대한 연구가 많은 관심을 받고 있다. 불소계 코팅을 진행한 양극산화 알루미늄은 대전 서열에서 음극 성향이 높은 대전층과 대전된 전하가 전극으로 손실없이 전달되도록 도와주는 절연층 그리고 전극을 모두 포함하고 있는 구조로서 마찰 대전 나노발전기의 적용에 있어 많은 연구가 진행되어 왔다. 본 연구에서는 마찰대전 나노발전기 적용에 유리한 양극산화 알루미늄을 활용하여 마찰대전 나노발전기에 영향을 미치는 표면 형상 및 절연층의 두께를 조절하여 발전량과의 상관관계에 대하여 분석하였다. 이러한 분석을 통하여 추후 마찰대전 나노발전기 제작에 있어 면적 대비 발전량을 증가시킬 수 있는 방향을 제시할 수 있었다.

Triboelectrostatic Separation of PVC Materials from Mixed Plastics for Waste Plastic Recycling

  • Lee, Jae-Keun;Shin, Jin-Hyouk;Ku, Jae-Hyun;Kim, Doo-Hyun;Cho, Jae-Min;Hwang, Yu-Jin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.597-601
    • /
    • 2001
  • Waste plastics amount is more than 3.5 million tons and 30% of industrial waste in 1998, Korea but recycling rate of industrial waste plastics is quite low because the material separation technology from the mixed waste plastic powders is not commercially available so far. This study covers the triboelectrostatic separation of polyvinylchloride (PVC) materials collection chambers and controllers. PVC and PET powders can be imparted negative and positive surface charges, respectively, due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. The extract content and yield of PVC separation from the mixed PVC and PET plastic powders are 90.0% and 98.2%, respectively. The electrostatic separation system using the fluidized bed tribocharger shows the potential to be an effective method for removing PVC materials from other mixed plastics.

  • PDF

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • 한국분무공학회지
    • /
    • 제7권2호
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

나노 분말 복합체 형성을 통한 PVDF 기반 에너지 하베스팅 소자 성능 향상 기술 동향 (Recent Development in Performance Enhancement of PVDF-Nanopowder Composite-based Energy Harvesting Devices)

  • 최건주;박일규
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.247-255
    • /
    • 2020
  • Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the ν-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.