• Title/Summary/Keyword: Triaxial compression tests

Search Result 261, Processing Time 0.029 seconds

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

Shear and CBR Characteristics of Dredge Soil-Bottom Ash-Waste Tire Powder-Mixed Lightweight Soil (준설토-저회-폐타이어 혼합경량토의 전단 및 CBR 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.34-39
    • /
    • 2011
  • This study investigated the shear and CBR characteristics of dredge soil-bottom ash-waste tire powder-mixed lightweight soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared with various contents of waste tire powder ranging from 0 to 100% at 50% intervals by the weight of the dry dredged soil. Several series of triaxial compression tests and CBR tests were conducted. The shear strength characteristics of the lightweight soil were compared using two different shear tests (triaxial compression test and direct shear test). The experimental results indicated that the internal friction angle of the lightweight soil obtained by the direct shear tests was greater than that by the triaxial shear tests. However, the cohesion value obtained by the triaxial shear tests was greater than that by the direct shear tests. The CBR value of the lightweight soil decreased from 35% to 15% as waste tire powder content increased.

Triaxial Compressive Behaviour of Unsaturated Silt under Different Drainage Conditions (다양한 경계조건에서의 불포화 실트의 삼축압축 거동)

  • Kim, Young-Seok;Oka, Fusao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.998-1003
    • /
    • 2008
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. Various triaxial compression tests for unsaturated soil under different drainage conditions are carried out. The behaviour of the pore pressure, namely, the pore-air pressure and the pore-water pressure, and matric suction during the shearing tests are investigated. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction.

  • PDF

A micromechanical model for ceramic powders (세라믹 분말의 변형거동 해석을 위한 미소역학모델)

  • Ha, Sang-Yul;Park, Tae-Uk;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.668-673
    • /
    • 2008
  • In this paper, we developed a physically-based micromechanical model for inelastic deformation of ceramic powders. The aggregate response of ceramic particles was modeled using the two-surface yield function which considered the shear-induced dilatancy caused by friction, rolling resistance and cohesion between powder particles and consolidation caused by plastic deformation of powder themselves under high compression. The constitutive equations were implemented into the user-subroutine VUMAT of finite element program ABAQUS/Explicit. The material parameters in the constitutive model were identified by calibrating the model to reproduce data from triaxial compression tests and simple compression tests. The density distribution obtained by using the proposed model was in good quantitative agreement with the experimental results of the triaxial compression and cold isostaic compression as well.

  • PDF

Undrained Behavior on Saemangeum Dredged Sands (새만금 준설모래의 비배수 거동)

  • Jeong, Sang-Guk;Kang, Kwon-Soo;Yang, Jae-Hyouk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.193-203
    • /
    • 2002
  • The results of an experimental study on Saemangeum dredged sands are presented. Undrained triaxial compression tests were performed with there different initial relative densities, namely 18, 34, and 50%, intend to evaluate undrained Behavior. All undrained triaxial compression tests were performed under static loading conditions. Undrained triaxial compression tests were exhibited complete static liquefaction, zero effective confining pressure and zero stress difference at lower confining pressures. As confining pressures were increased, the effective stress paths indicated increasing resistance to static liquefaction by showing increasing dilatant tendencies. The fines and larger particles create a particle structure with high compressibility at lower confining pressure. The effect of increasing relative density was to increase the resistance of the sand against static liquefaction by making the sand more dilatant.

Strength Characteristics of Decomposed Granite Soil in Cubical Triaxial Test (입방체형 삼축시험에 의한 다짐화강토의 전단강도 특성)

  • 정진섭;김찬기;박승해;김기황
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.64-73
    • /
    • 1996
  • The three-dimensional strength behavior of compacted decomposed granite soil was studied using cubical triaxial tests with independent control of the three principal stresses. All specimens were loaded under conditions of principal stress direction fixed and aligned with the directions of compacted plane. For comparable test conditions, the major principal strain and volume strain to failure were smallest when the major principal stress acted perpendicular to the compacted plane. The opposite extremes were obtained when the major principal stress acted parallel to the compacted plane. In cubical triaxial tests with same b values and with ${\theta}$ values in one of three sectors of the octahedral plane, independent of the range of ${\theta}$, higher friction angles are obtained in tests with b greater than in triaxial compression tests in which b 0.0, Comparison between the results of the drained cubical triaxial tests on lksan compacted decomposed granite soil and the cross section of the Mohr-Coulomb failure surface as well as the cross section of the Mohr-Coulomb failure surface were made. Lade's isotropic failure criterion based on vertical specimens overestimates the strengths for tests performed with values of 0 between 90˚ and 1 50˚ the Mohr-Coulomb criterion generally underestimates the strengths of tests performed with values of ${\theta}$ between $0^{\circ}$ and $180^{\circ}$ except around the $120^{\circ}$.

  • PDF

The Behavior of Overall Strain Range in Undrained Triaxial Compression Tests for a Weathered Soil (풍화토의 비배수 삼축압축시험시 전체 변형률 영역의 거동에 관한 연구)

  • 안영대;오세붕;고동희;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • In order to evaluate the behavior of overall range from small strain to failure, the triaxial compression tests with LVDTs were performed for local displacement measurements. According to the result it was possible to evaluate the total range behavior from 0.001% to 10% and both secant moduli of undisturbed and disturbed weathered soils had a similar result in the small slain level. The normalized shear moduli$(G/G_{max})$ in the undrained triaxial compression tests were similar to those of resonant column tests but the maximum shear moduli$(G/G_{max})$ were strongly affected by the ratio of saturation. As a result of parametric study a constitutive model with anisotropic hardening could predict the behavior of total strain range.

Estimation of Friction Angle of Rubble Mound by Centrifuge Model Tests (원심모형시험에 의한 사석재의 내부마찰각 추정)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, GiI-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.153-159
    • /
    • 2002
  • This paper is an experimental work of estimating friction angle of very coarse grained soil such as rubble mound by performing laboratory experiments. Two crushed rocks of rubble mound were used for tests. Triaxial compression tests with drained conditions were performed to measure friction angles of soils prepared by mixing the crushed soil having an identical coefficient of uniformity with different maximum grain size distribution. Centrifuge model experiments with those soils were also performed to measure angle of repose and to estimate friction angle of soil from measuring the slope of slip line in the active stress state. Model tests were carried out by changing the G-levels of 1G and 50G. From triaxial compression tests, the measured value of friction angle of soil is in the range of $41{\sim}57^{\circ}$. The measured value of repose angle is in the range of $32{\sim}35^{\circ}$. The values of friction angle are found not so sensitive to the maximum grain size of soil as long as the coefficient of uniformity is identical. Estimated value of friction angle from measuring the slope of slip line in the active stress state is in the range of $30{\sim}46^{\circ}$. Thus, the estimated angle of friction are found to be greater in the order of the measured angle of repose, the estimated value from the slope of active state, and triaxial compression test results. On the other hand, the measured values of friction angle from triaxial tests were compared with empirical equations, based on the relation between friction angle and void ratio. Equations proposed by Helenelund(l966) and Hansen(1967) found to be relatively reliable to estimate friction angles of soil.

  • PDF

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF