• Title/Summary/Keyword: Triangular structure

Search Result 314, Processing Time 0.024 seconds

Development of Halfedge-based Triangular Mesh Data Structure (반모서리 기반의 삼각망 자료 구조 개발)

  • Chung, Yun-Chan;Chang, Min-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • Triangular mesh models are widely used in reverse engineering, computer graphics, rapid prototyping and NC(numerical controller) tool-path generation. Triangular mesh models are generated from point clouds, surface models and solid models. A halfedge-based triangular mesh data structure is proposed and the development considerations are presented. In the presented data structure, halfedge is the key data structure. Halfedge stores its triangle index and the order in the triangle. Triangles do not store the halfedge lists explicitly. Halfedge is referred by value and defined when it is required. Proposed data structure supports four design requirements: efficient rendering, compact memory, supporting efficient algorithms and easy programming.

A Study on Miniaturization of a Log-Periodic Dipole Array Antenna (대수주기 다이폴 배열 안테나의 소형화 연구)

  • Ham, Hyung-Jun;Ryu, Hong-Kyun;Park, Beom-Jun;Park, Young-Ju;Lee, Kyu-Song;Woo, Jong-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.709-720
    • /
    • 2014
  • In this paper, we studied miniaturization of LPDA(Log-Periodic Dipole Array) antenna used for VHF and UHF bands. To miniaturize the LPDA antenna, in this study, the radiation elements in a low frequency were changed into a triangular meander structure which has small current cancelation effect at feed part. For the triangular meander structure, an isosceles triangular and right triangular meander structures were proposed and the LPDA antennas were miniaturized by using the two meander structures. Also, the simulated and measured results were compared for the two miniaturized LPDA antennas. As a result, the isosceles triangular meander and right angle triangular meander structure applied LPDA antennas were reduced up to 60.5 % and 72.4 % compared a basic LPDA antenna, respectively. Consequently, we confirmed that the triangular meander structure is suitable for miniaturization of a LPDA antenna.

A Study on the Flow Characteristics around Underwater Triangular Structure (삼각형상 수중구조물 주위의 유동특성에 관한 연구)

  • Han, Won-Hui;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Triangular structure is used as basic shape of artificial structures for generating the upwelling current in order to make rich fishing ground at sea. Artificial upwelling current could bring the deep sea water containing a lot of nutrients from the bottom up to the surface. The purpose of this study is to examine the flow characteristics around underwater triangular structure with various stratification parameter. An experimental study was carried out for the triangular structure model in the circulating water channel to investigate flow characteristics by flow visualization method. A velocity fields around the underwater structure were measured by particle image velocimetry(PIV). The experimental results showed that the upwelling effect at the back and upper region of the structure could be best when the water depth was 2 times of the structure height and the stratification parameter was approximately 3.0. These quantitative data will be useful to determine the functional efficiency cf artificial upwelling structures.

  • PDF

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band

  • Hong, Seongjin;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2018
  • We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.

Flow Characteristics around Underwater Triangular Structure with Different Inclination (경사도가 다른 수중 삼각형상구조물 주위의 유동특성)

  • Choe, Sang-Bom;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.241-246
    • /
    • 2014
  • The purpose of this study is to investigate the flow characteristics around underwater triangular structure with various inclination and Reynolds number. A flow fields around the triangular structure model were measured by visualization method and PIV in the circulating water channel. The result of the experiment is where the triangular structure that has a inclination of $45^{\circ}$ and the reynolds number at $Re=2.9{\times}10^3$ showed rising velocity component to 2.7 times of the structure height. When the reynolds number is steady and when the inclination is greater the descending velocity component of the structure's rears current form is greatly shown and for the areas where it's more than y/hs=1.75 has a change in the angle of inclination but it doesn't give a great effect to it.

Triangular units based method for simultaneous optimizations of planar trusses

  • Mortazavi, Ali;Togan, Vedat
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 2017
  • Simultaneous optimization of trusses which concurrently takes into account design variables related to the size, shape and topology of the structure is recognized as highly complex optimization problems. In this class of optimization problems, it is possible to encounter several unstable mechanisms throughout the solution process. However, to obtain a feasible solution, these unstable mechanisms somehow should be rejected from the set of candidate solutions. This study proposes triangular unit based method (TUBM) instead of ground structure method, which is conventionally used in the topology optimization, to decrease the complexity of search space of simultaneous optimization of the planar truss structures. TUBM considers stability of the triangular units for 2 dimensional truss systems. In addition, integrated particle swarm optimizer (iPSO) strengthened with robust technique so called improved fly-back mechanism is employed as the optimizer tool to obtain the solution for these class of problems. The results obtained in this study show the applicability and efficiency of the TUBM combined with iPSO for the simultaneous optimization of planar truss structures.

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Spherical Space Frame Structure with Triangular Network Pattern (삼각형 네트워크를 갖는 단층 및 복층 구형 스페이스 프레임 구조물의 좌굴특성에 관한 비교 연구)

  • 이호상;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.251-257
    • /
    • 1998
  • Spherical space frame structure with triangular network pattern, which has the various characteristics for the mechanic property, a funtional property, an aesthetic property and so on, has often been used as one of the most efficient space structures. It is expected that this type will be used widely in large-span structural roofs. But because this structure is made of network by combination of line elements there me many nodes therefore, the structure behavior is very complicated and there can be an overall collapse of structure by buckling phenomenon if the external force reaches a limitation. This kind of buckling is due to geometric shape, network pattern, the number of layer and so on, of structure. Therefore spherical space frame with triangle network pattern have attracted many designers and researchers attention all over the world. The number of layer of space frame is divided in to the simgle, double, multi layer. That is important element which is considered deeply in the beginning of structural design. The buckling characteristics of single-layer model and double-layer model for the spherical space frame structure with triangular network pattern are evaluated and the buckling loads of these types are compared with investigation their structural efficiency in this study.

  • PDF

A Study on Characteristics of the Twin Tree Array Structure of the Triangular Patch Array Antenna (삼각형 패치 트윈 트리 배열 안테나의 특성 연구)

  • Chang, Tae-Soon;Kang, Sang-Won
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.372-377
    • /
    • 2020
  • This paper is based on the triangular inset patch antenna as the basic structure, and the array structure is the twin tree form to improve the antenna's main lobe gain and reduce the side lobe gain. A twin tree structure was implemented by placing two identical trees of 2-4-6 arrays of triangular inset patches side by side. The parametric analysis confirmed that the gap between tree structures arranged side by side is most effective for impedance matching. The fabricated antenna has a gain of 16.74 dBi at 24.15 GHz, and the beam width of the main lobe is 22° in the E-plane and 6° in the H-plane. The antenna size was 125 mm × 50 mm, and a Taconic TLC substrate with a dielectric constant of 3.2 was used. Although the main lobe gain is improved over the twin tree structure, The directivity in the beam pattern due to the mutual interference of the two tree array structure can be improved.

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M.;Khatibi, M.M.;Sadeghzadeh, S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1327-1337
    • /
    • 2018
  • This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.