• Title/Summary/Keyword: Triangular Number

Search Result 303, Processing Time 0.023 seconds

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

NATURAL CONVECTION IN A TRIANGULAR POOL WITH VOLUMETRIC HEAT GENERATION (삼각형 형상의 풀 내에서 열원에 의한 자연대류 수치해석)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Song, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.302-310
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

  • PDF

Reconstruction of congenital microtia after ear canaloplasty using V-Y advancement of a temporal triangular flap

  • Park, Hae Yeon;Lee, Kyeong-Tae;Kim, Eun-Ji;Oh, Kap Sung
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.614-621
    • /
    • 2021
  • Background Reconstruction of congenital microtia remains challenging, particularly in patients with a history of ear canaloplasty due to insufficient regional soft tissue. The insertion of a tissue expander prior to implantation of the cartilage framework has traditionally been employed. However, this procedure could induce additional morbidity. Herein, we present a method using V-Y advancement of a temporal triangular flap to gain additional soft tissue in these challenging cases. Methods Congenital microtia patients with a history of ear canaloplasty who underwent auricular reconstruction using the Nagata technique between 2016 and 2020 were reviewed. To obtain additional soft tissue, V-Y advancement of a temporal triangular flap was performed concurrently with implantation of the costal cartilage framework, without prior insertion of a tissue expander. The outcomes of these patients with respect to postoperative complications and esthetics were evaluated. Results Eight patients with bilateral lesions were included. No specific complications developed after the first-stage surgery. However, one patient experienced complications after the second stage (auricular elevation). An analysis of the esthetic results showed most patients had excellent outcomes, achieving a satisfactory convolution. The median number of operations needed to complete reconstruction was 2, which was fewer than required using the conventional method with prior insertion of a tissue expander. Conclusions In patients with a history of previous canaloplasty, V-Y advancement of a temporal triangular flap could serve as an alternative to tissue expansion for microtia reconstruction. This technique provided reliable and satisfactory results with a reduced number of surgical stages.

Performance Analysis on the Various Shapes of Symmetric Fins (여러 형상의 대칭적인 핀의 성능 해석)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.97-104
    • /
    • 1996
  • A comparison of the fin effectiveness, thermal resistance, and fin efficiency between the symmetric triangular fin and the symmetric trapezoidal fin which has various slopes of the fin side is made. Also the relation between Biot number and the non-dimensional fin length for equal amount of heat loss from these fins is shown. For these analyses, a forced analytic method is used. In particular, the equation for the heat loss is used simultaneously for both the symmetric triangular fin and the symmetric trapezoidal fins by just adjusting the value of the slope factor. The value of Biot number varies from 0.01 to 1.0 and the non-dimensional fin length varies from 0.01 to 10. For simplicity, the root temperature and fin's surrounding convection coefficients are assumed constant and the condition is assumed to be steady state.

  • PDF

CONGRUENCES MODULO POWERS OF 2 FOR OVERPARTITION PAIRS INTO ODD PARTS

  • Ahmed, Zakir;Barman, Rupam;Ray, Chiranjit
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.471-487
    • /
    • 2020
  • We find congruences modulo 32, 64 and 128 for the partition function ${\overline{PP}_o}(n)$, the number of overpartition pairs of n into odd parts, with the aid of Ramamnujan's theta function identities and some known identities of tk(n), for k = 6, 7, where tk(n) denotes the number of representations of n as a sum of k triangular numbers. We also find two Ramanujan-like congruences for ${\overline{PP}_o}(n)$ modulo 128.

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

Colourings and the Alexander Polynomial

  • Camacho, Luis;Dionisio, Francisco Miguel;Picken, Roger
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.1017-1045
    • /
    • 2016
  • Using a combination of calculational and theoretical approaches, we establish results that relate two knot invariants, the Alexander polynomial, and the number of quandle colourings using any finite linear Alexander quandle. Given such a quandle, specified by two coprime integers n and m, the number of colourings of a knot diagram is given by counting the solutions of a matrix equation of the form AX = 0 mod n, where A is the m-dependent colouring matrix. We devised an algorithm to reduce A to echelon form, and applied this to the colouring matrices for all prime knots with up to 10 crossings, finding just three distinct reduced types. For two of these types, both upper triangular, we found general formulae for the number of colourings. This enables us to prove that in some cases the number of such quandle colourings cannot distinguish knots with the same Alexander polynomial, whilst in other cases knots with the same Alexander polynomial can be distinguished by colourings with a specific quandle. When two knots have different Alexander polynomials, and their reduced colouring matrices are upper triangular, we find a specific quandle for which we prove that it distinguishes them by colourings.

Direct Slicing with Optimum Number of Contour Points

  • Gupta Tanay;Chandila Parveen Kumar;Tripathi Vyomkesh;Choudhury Asimava Roy
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.33-45
    • /
    • 2004
  • In this work, a rational procedure has been formulated for the selection of points approximating slice contours cut in LOM (Laminated Object manufacturing) with first order approximation. It is suggested that the number of points representing a slice contour can be 'minimised' or 'optmised' by equating the horizontal chordal deviation (HCD) to the user-defined surface form tolerance. It has been shown that such optimization leads to substantial reduction in slice height calculations and NC codes file size for cutting out the slices. Due to optimization, the number of contour points varies from layer to layer, so that points on successive layer contours have to be matched by four sided ruled surface patches and triangular patches. The technological problems associated with the cutting out of triangular patches have been addressed. A robust algorithm has been developed for the determination of slice height for optimum and arbitrary numbers of contour points with different strategies for error calculations. It has been shown that optimisation may even lead to detection and appropriate representation of elusive surface features. An index of optimisation has been defined and calculations of the same have been tabulated.

IDEMPOTENCE PRESERVING MAPS ON SPACES OF TRIANGULAR MATRICES

  • Sheng, Yu-Qiu;Zheng, Bao-Dong;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.17-33
    • /
    • 2007
  • Suppose F is an arbitrary field. Let ${\mid}F{\mid}$ be the number of the elements of F. Let $T_{n}(F)$ be the space of all $n{\times}n$ upper-triangular matrices over F. A map ${\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is said to preserve idempotence if $A-{\lambda}B$ is idempotent if and only if ${\Psi}(A)-{\lambda}{\Psi}(B)$ is idempotent for any $A,\;B\;{\in}\;T_{n}(F)$ and ${\lambda}\;{\in}\;F$. It is shown that: when the characteristic of F is not 2, ${\mid}F{\mid}\;>\;3$ and $n\;{\geq}\;3,\;{\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is a map preserving idempotence if and only if there exists an invertible matrix $P\;{\in}\;T_{n}(F)$ such that either ${\Phi}(A)\;=\;PAP^{-1}$ for every $A\;{\in}\;T_{n}(F)\;or\;{\Psi}(A)=PJA^{t}JP^{-1}$ for every $P\;{\in}\;T_{n}(F)$, where $J\;=\;{\sum}^{n}_{i-1}\;E_{i,n+1-i}\;and\;E_{ij}$ is the matrix with 1 in the (i,j)th entry and 0 elsewhere.