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CONGRUENCES MODULO POWERS OF 2 FOR
OVERPARTITION PAIRS INTO ODD PARTS

ZAKIR AHMED, RUPAM BARMAN, AND CHIRANJIT RAY

ABSTRACT. We find congruences modulo 32, 64 and 128 for the partition
function pp,(n), the number of overpartition pairs of n into odd parts,
with the aid of Ramamnujan’s theta function identities and some known
identities of tx(n), for k = 6,7, where tx(n) denotes the number of rep-
resentations of n as a sum of k triangular numbers. We also find two
Ramanujan-like congruences for pp,(n) modulo 128.

1. Introduction

Corteel and Lovejoy [7] introduced the notion of overpartitions. Several
mathematicians studied arithmetic properties of overpartitions, for example,
see Mahlburg [14], Hirschhorn and Sellers [10], and Kim [11]. An overpartition
of a nonnegative integer n is a partition of n in which the first occurrence
of a part may be over-lined. For example, the eight overpartitions of 3 are
3,3,2+1,2+1,2+1,24+ 1,1+ 1+ 1,1+ 1+ 1. Let p(n) denote the number
of overpartitions of n. The generating function for p(n) is given by

)

~— vn (G0 () 1
2 P = T ek~ ad)

where, as customary, for any complex number a and |¢| < 1,
o0

(@:@)oe == [ (1 = ag"™").

n=1
An overpartition pair into odd parts is a pair of overpartitions (a,b) such that
the parts of both overpartitions a and b are restricted to be odd integers. For
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example, the overpartition pairs of 3 into odd parts are

(3,0),(3,0), (1+14+1,0), (T+1+1,0), (1+1,1), (1+1,1), (1+1,1), (1+

1,1),
(0,3),(0,3), (0, 14+1+1), (D, T+1+1), (1,1+1), (1,T+1),(1,1+1), (1,1+1).

If we denote by pp,(n) the number of the overpartition pairs of n into odd
parts, then pp,(3) = 16. The generating function for pp,(n) is given by

iI’T’ () = TN _ (@)%
= (¢¢*)3  (6d*)%
_ (%)% (%) (¢S

(5% (Gds (6o d)%
(9)
p(—aq)

This function has arisen in a number of recent papers, but in contexts which
are very different from overpartitions. For example, see Bessenrodt [3], Chen
and Lin [6], Bringmann and Lovejoy [4] and Kim [12].

In 2012, Lin [13] established several congruences for pp,(n). Let p be a prime
such that p =1 (mod 4) and r an integer with 1 < r < p. Then for all n > 0,
Lin [13] proved that

S

(1) =

PPo(p*(pn+1)) =0 (mod 16),
DP,(8n+7) =0 (mod 32).
In the same paper, he also found that for all o, n > 0,

P0,(9%(9n+6)) =0 (mod 3),

PP,(9%(27n + 18)) =0 (mod 3).
In this article, we prove some infinite families of congruences for pp,(n) modulo
32,64 and 128. In the proof, we use Ramamnujan’s theta function identities
and some known identities of t;(n), for k = 6, 7, where t;(n) denotes the
number of representations of n as a sum of k triangular numbers. We also

apply series representations of certain theta functions. In the following two
theorems we find infinite families of congruences for pp,(n) modulo 32 and 64.

Theorem 1.1. Let p be an odd prime such that p = 3 (mod 4). Then for
a,n > 0, we have

(2) Wo <8p2a+1(pn + ’I“) +p2(a+1)>

(3) D, <8p2a+1(pn + T) + 5p2(a+1)> =0 (mod 64),

0 (mod 32),

where 1 < r < p.
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Theorem 1.2. Let p be an odd prime such that p = 3 (mod 4). Then for
a,n > 0, we have

(4) PP, (8p2"‘“(pn +7) + 2p2(a+1)> =0 (mod 64),
where 1 < r < p.

In the following results, we find three infinite families of congruences for
PP, (n) modulo 128.

Theorem 1.3. Let p be an odd prime such that p = 5 (mod 8) orp = 7
(mod 8). Then for a,n > 0, we have

(5) PP, (16p2““(pn +7)+ 6p2<a+1>) =0 (mod 128),
where 1 < r < p.
Theorem 1.4. Let p be an odd prime such that p = 1 (mod 4). Then for

a,n > 0, we have
PP, (6p**T*) =0 (mod 128).

Theorem 1.5. Let p be an odd prime such that p t n. Then for a,n > 0, we
have

(6) PP, (16p™F3 .+ 14p** T4 =0 (mod 128).
We also find two Ramanujan-like congruences for pp,(n) modulo 128, namely:

Theorem 1.6. For any integer n > 0, we have
(7) PP,(72n +42) =0 (mod 128),
(8) PP, (72n 4+ 66) =0 (mod 128).

We end this section by giving two internal congruences for pp,(n) as listed
below.

Theorem 1.7. For any integer n > 0, we have

(9) P, (8n + 6) = 6pp,(4n +3) (mod 128).
Theorem 1.8. For any integer n,a > 0, we have

(10) DD, (12 x 3%n 4+ 6 x 3%) = (—1)“pp,(12n + 6) (mod 72).

The rest of this paper is organized as follows. In Section 2 we recall Ra-
manujan’s theta functions and also give some lemmas which will be used to
prove our main results. In Section 3 we prove Theorems 1.1 and 1.2. We prove
Theorems 1.3, 1.4 and 1.5 in Section 4. We apply series representations of
certain theta functions to prove these theorems. We also use certain known
identities for tx(n). Finally, in Section 5 we prove Theorems 1.6, 1.7 and 1.8.
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2. Preliminaries

Ramanujan’s general theta function f(a,b) is defined by
flab)i= > aFEFD2PEETD2 - gh) <1
k=—o00

Three special cases of f(a,b) are

(11) o(q) = f0,0) =142 " = (—4:¢*)% (6% oo
k=1
o) = S e _ (@8
(12) ¥(q) = f(q,q") ];)q @GP
(13) f(=q) = f(=¢,—a*) = Y (=1)F¢"*F D2 = (¢;)ws,
k=—oc0

where the product representations arise from Jacobi’s famous triple product
identity [2, p. 35, Entry 19]

f(a,b) = (—a;ab) oo (—b; ab) oo (ab; ab) .
After Ramanujan, we also define
(14) X(9) = (=¢; %) oo-

By manipulating the g-products, one can easily arrive at the following repre-
sentations:

o(g) = ()3 gy = 0%
(603 (¢ ¢’ (€0
2. .2\2 2..2\3
979" ) 979" )0
15) o= L= g - G
(4 0)o0 (9 0*) oo (400 (q*0*)
We now recall two definitions from [9, p. 225]. Let II represent a pentagonal

and {2 represent an octagonal number
2
"

2 and Q(q) =

number (a number of the form 3"2%)

(a number of the form 3n? + 2n). Let II(q) = Y00 ¢
S 3n’+2n Then,

n=—oo 4

(0% 0%) oo (4% 6°)2,

1o ta) = (4 @)oo (455 ¢%) o0
and
Q(_q): Z (_1)nq3n2+2n: Z (_1)nq3n2—2n
. 6. ,6\2
I e R CR e o

We recall the following properties of theta functions.
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Lemma 2.1. From [2, p. 40, Entry 25(i) and (ii)], we have

(18) v(a) = ¢(q") + 249 (¢%).
Lemma 2.2. From [2, p. 40, Entry 25(v) and (vi)], we have
(19) 0(@)* = o(¢®)* + 4aqv(q")*.
Lemma 2.3 ([2, p. 114, Entry 8(ii) and p. 49, Corollary (i)]).
1)*kqg*
(20) - —1+82 qu.
Lemma 2.4. By binomial expansion, for any non negative integer k, we have
(21) p(—9)*" =1 (mod 2"1),
or
(22) (G0)% = (¢5¢)% (mod 28),

We need the following congruences:
Lemma 2.5.
(23) p(=9)* =3 - 2p(—¢)* (mod 16).
Proof. We have,

S0,

ie.,

0(@)*+3=0 (mod 4).
Multiplying these above two equations we get,

p(9)* +2¢p(q)* =3 (mod 16).
Now substituting —¢q for ¢, we obtain the required result. (I
Recall these 3-dissection formulas [9, p. 225] and the following lemma.

Lemma 2.6.
(24) ¢(q) = (¢”) +249q°),
(25) W(q) = T(g") + 2q1(¢”).-

We also require the following p-dissections for some theta functions.

Lemma 2.7 ([2, p. 49]). For any prime p,

(26) o(q) = <P(qp2) n Z qr2f(qp(1772r)’ qp(p+2r))'
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Lemma 2.8 (Cui and Gu [8, Theorem 2.1]). If p is an odd prime, then

p—3

2
2 K24k p24+@2k+)p  p2—(2k+1)p
F)V+> a7 flad 2 g 2 ).

(27) ¥(q) =

Furthermore, for 0 <k < TS7
2

+k , p?—
2 # 8
Lemma 2.9 ([1, Ahmed and Baruah]). If p > 3 is a prime, then
—1 —1 2 2
(45 9)% =p(—1) T ()

(28) + Z (~1)Fq" 3 3 (~1)"(2pn + 2k + L)grm E

n=0

™

! (mod p).

k=0
k;ﬁg

Furthermore, if k # *5=, 0 <k <p—1, then

k> 4k —1
5 3 (mod p).

3. Proofs of Theorems 1.1 and 1.2

In this section, we first prove the following two lemmas from which Theorem

1.1 readily follows.

Lemma 3.1. We have

(29) n§=017p0(4n )" = 490(52_1233 ).
Y o _ PP

v Pl A =R g

(31) n:OZTpO(4n i 3)qn B 16%

Proof. From (1) and using (18) and (19), we have
2

¢(q) ela)?®  _ v(a)?¢(e®)
g%”” T o0 o2 o)
_ (o(a?) +2q9(a%))*((a)* + 46*¥(a%)?)
p(—q")*

o(g*)*+ 4q0(q*)? (q8)+8q2<p(q4)2¢(q8)2+16q3s0(q4)¢(q8)3+16q4¢(q8)4_

o(—q*)*

Extracting the terms containing ¢**+"

for r = 1,2, 3, we complete the proof.

O
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Lemma 3.2. Let p be an odd prime such that p = 3 (mod 4). Then for
n,a > 0, we have

(32) > pp, (8% - n+ ™) " = 4(g; )% 0(¢°)  (mod 32),
n=0
(33) ZpTUO (8p2a on+ 5p2°‘) q" =56(q;q)° ¢(¢*) (mod 64).
n=0

Proof. From (29), (15) and using (18) and (21), we have
— (65 ¢%)8
Pp,(4n +1)q" = 4 — 2
;::0 (45 9)52 (g% q*)4
(@:0% (% a3 (6% 428,
(g% qh)% (q:9)8
(:9)% (g% )L 1
(¢ 4% w(=q)®
(0% (% ¢35

=4

=4 (@b ) (mod 64)
2. 211
= 4W¢(q) (mod 64)
= 48;;]4;‘2" (p(g*) — 2q9(¢%)  (mod 64).

Extracting the terms containing ¢*” and ¢?"*! from the above congruence and
using (21), we find that

(34) > Pp.(8n+ 1)¢" = 4(¢; )% 0(¢*)  (mod 32),
n=0
(35) > PD,(8n+5)q" = 56(q; 9)%.%(¢*)  (mod 64),
n=0

which are the cases a = 0 in (32) and (33), respectively.
Using the p-dissections of ¢(q) and (q;¢)3, from (26) and (28) in (34), we
obtain

oo p—1

k(k+1) . B2kl
> PB,(8n+1)q" = 4{ (=D)fq 7 Y (=1)"(2pn + 2k + 1)g"™ "
n=0 kiigl n=0

p—1

(36) ™ {(P(qu2) + Z 612772f(qu(p—Zr)7 q2p(p+2r))} (mod 32)_

r=1



478 Z. AHMED, R. BARMAN, AND C. RAY

Now consider the congruence

k(k+1 2 —
% yor2=l "~ (mod p),
which is equivalent to
(2k+1)>4+16r2 =0 (mod p).

If p =1 (mod 4), then the only solution of the above congruence is k = pr1

2_
and 7 = 0. Hence extracting the terms containing ¢/t "= * from (36), we
obtain

@0 S (8 (e ) 1) o A ela) o ),

Again, extracting the terms containing ¢?” from the above congruence, we find
that

(38) S B, (80 + 1)) ¢" = 4(g:0)’0(a?) (mod 52).

n=0

Now using mathematical induction, we can easily arrive at (32). Proceeding
similarly as shown in the proof of (32), we readily arrive at (33). O

Proof of Theorem 1.1. With the aid of (32), and the p-dissections of ¢(q) and
(q;9)2, from (26) and (28), respectively, we arrive at (2). Also using (33),
and the p-dissections of 1(q) and (g;¢)2, from (27) and (28), respectively, we
readily obtain (3). O

To prove Theorem 1.2, we first establish the following lemma.

Lemma 3.3. Let p be an odd prime such that p = 3 (mod 4). Then for any
non-negative integers n and o, we have

(39) > pp, (8™ - n +2p*) = 8(q;9)%%(q)  (mod 64).
n=0
Proof. From (30), we have
- n _ g 2@*0(e?)?
(40) ;Jppo@n T2t =85
Applying (21), (40) yields
(41) > DP,(An +2)q" = 8¢(q)*¥(¢*)*  (mod 64).

n=0

Since, [2, p. 40, Entry 25(v) and (vi)],
(42) 0*(q) = o(q*)* + 4qv(q")?,
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extracting the terms containing ¢?* from (41), we obtain

(43) > 1P, (8n +2)¢" = 8¢ (q)p*(g) (mod 64).

n=0

Now if we apply (15) and (22), then (43) yields

> PP, (8n+2)¢" = 8(q;9)%1(g)  (mod 64),

n=0
which is the case o = 0 in (39). Using the p-dissections of ¥(q) and (g;q)3,
from (27) and (28), respectively, and then proceeding similarly as shown in the

proof of (32), we obtain the required result. O
Proof of Theorem 1.2. Employing the p-dissection of (¢;¢)3, and v(q) from

o

(28) and (27), respectively in (39), we easily arrive at (4). O
4. Proofs of Theorems 1.3, 1.4 and 1.5

Lemma 4.1. Let p be an odd prime such thatp =5 (mod 8) orp =7 (mod 8).
Then for any non-negative integers n and «, we have

(44) > pp, (16p° - n+6p>*) = 96(¢°; ¢*)31b(—q) (mod 128).

n=0
Proof. From (30), we have
o0 2,1 (2)2
_ n q)"¢(q
> p(4n+2)q ) <4) :
o e(—q)
Employing (20), the above equation can be rewritten as
o v(9)*¥(¢?)?
45 4 2)q"t =8 —~——"
(45) nzioppo(nﬂL )q BT

where, z =83 77, %, i.e., *(—q) = 1 — . Now expanding the term

%, we obtain
—T

> PP (4n +2)¢" = 8p(9)*¢(¢°)*(2 — (—¢)*)  (mod 128).
n=0

Since ¢(q)¢(—q) = ¢(—¢*)?, the above congruence reduces to

(46) > PP, (4n+2)q" =161(¢%) ¢(q)* —8v(¢°)*p(—4*)*¢(—q)* (mod 128).

n=0

Employing (42) and then extracting the terms containing ¢?"*! from (46), we
find that

(47) )PP, (8n + 6)¢" =641()*¢(¢°)* +320(9)°p(—a) ¥ (¢%)* (mod 128).

n=0
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Using (15) and (22), (47) yields

(
S n_ 913 | a0 (@h10M)5 (%))
z:: (8n 4 6)¢" = 641 (¢?)° + 32 o (mod 128).

Now using (11) for ¢(—¢) and then expanding the series as shown in (45), the
above congruence reduces to

> PP (81 +6)g" = 640(¢°)° + 32(¢%; ¢*) 4 (0% ¢°) oo (2 — (=) (mod 128).
n=0

Employing (15) and (22) in the above congruence, we find that

> PP, (8n +6)¢™ = 641(¢%)? + 64v(¢%)?

n=0
—32(¢"¢") 5 (0% ¢*)op(—q)  (mod 128),

which is equivalent to

(48) ) PP,(8n+6)¢" = 96(¢"; ¢*)% (4% ¢°)otp(—q)  (mod 128).
n=0

Employing (18) with ¢ replaced by —¢, and then extracting the terms con-
taining ¢®" from (48), we find that

> PP, (161 + 6)q" = 96(¢”; ¢°) 4 (4 )ootp(q?)  (mod 128).
n=0

Again, by using (15) and (22), the above congruence reduces to

> P, (161 +6)¢" = 96(¢%; ¢*)%¥(—¢) (mod 128),

n=0
which is the case o = 0 in (44). With the aid of p-dissections from (27) and
(28), and using mathematical induction we easily arrive at (44). O

Proof of Theorem 1.3. Employing (27) and (28) in (44), we readily obtain (5).
O

Proof of Theorem 1.4. From (30), we have

_ n ( 2 (g?)? 0(q)%%(¢?)?
;PPO(% B o i
_ QU@ (p(®)? + 4qv(q*))°
p(—¢*)®

P(g*)2(0(q*)° 4+ 129(¢*)*h(q*)* + 48¢20(¢*)* Y (¢*)* + 64¢%(q*)°) _

=8 o(—¢*)8
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Now extracting the terms containing ¢®"*! and using (21), it follows that,
modulo 128,

_ 960(q)"¥(9)*P(*)* + 51293()*¢(¢*)°

Z]Tpo(8n+6)q” o(—q)®

n=0

_ 960(9)*¥(q)°
 p(—q)®
(50) = 961)(q)°

(51) =96 to(n)q",

where ¢ (n) denotes the number of representations of n as a sum of k triangular
numbers.
From Xia [15], we have, for n, a > 0,

3p* -1\ _p -1
2 =
(52) te ( 4 ) p2—1 "

where p =1 (mod 4).
It is easy to check that

pRats 1 dlat)=1 4at1)-1
T > op¥= > 1=0 (mod4).
1=0 =0

Hence, by replacing o by 4« + 3 in (52) and using the above result, we find
that

W (D) g e

Now employing the above in (51), we complete the proof. O
Proof of Theorem 1.5. From (50), we have, modulo 128

> B, (8n+ 6)g" = 96¢(q)°

n=0

= 960(q)*¥(¢%)*
= 96v(q°)*(0(q*) + 2qv(¢%))*.

Extracting the terms containing ¢?"*!, it follows that, modulo 128,

> D, (160 + 14)g™ = 96¢:(9)*(60(¢°) ¢(q*) + 8qv(¢*)°)

n=0

= 649(9)* ¥ (q") ()
= 649 (q)*¥(q")
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= 64¢(q)"
(53) =64 Z tz(n)q".
n=0

From Yao [16], we have

7 2a_1 5 504_1 7177(1)271)
7 (pQO‘-n+@é;)):)\g(p,a,Sn—i—?)h(n)—p (p5 1 )t7 ( 55 )

where p is an odd prime, o > 0 and

practs _ ot <%) ¥ p? (%z) 1

)\ =
2(pa «, n) p5 1
Replacing n by pn + @ and employing the above for Ay, we obtain
7(p2a+2 _ 1) p5a+5 -1 7(p2 _ 1)
t 20+1 | — t
7(19 n+ 3 po1 T pnt ———
P> -1), (n
- (=),
p°—1 p
It is easy to show that for any odd prime p and a > 0,
plo(atD) 10(a41)—1 10(a+1)—1
5i _ _
_ = = 1=0 d 2).
FoT D g TS 1E0 el

Now replacing a by 2a + 1, we find that

7 do+4 1 5(n10a+5 _ 1 n
ts <p4(x+3 on+ (ps)> = _p(ppﬁl)t7 (p) (mod 2)

If p t n, then ¢7 (%) = 0. Hence from (53) and the above we easily arrive at
(6). O
5. Proofs of Theorems 1.6, 1.7 and 1.8

Proof of Theorem 1.6. Extracting the terms containing ¢?" from (49), and us-
ing (21), (24) and (25), it follows, modulo 128,

8¢(q)%p(q)% + 3841 (q)?(q?)*p(q)?
o(—q)8

> Pp,(8n+2)q" =

n=0

If
o

)+ a0(@)” (p(a%) +242(a*))°
) +2q11(¢*)Y(¢”) + *¥(¢”)?) (¢(q”)°
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+ 129(¢°)°Q(¢%) + 6040 (¢°)*(¢*)?
+160¢°0(q°)*Q(g®)? + 240¢* o(¢”)*Q(¢*)*
+192¢°0(q°)Q(q*)® + 64¢°Q(¢*)°)

3n+2

Extracting the terms containing ¢ , we have, modulo 128,

(54) > PP,(24n + 18)¢"™ = 96T1(q)*0(q*)*Q(q)* + 64T1(q)0(¢*)*1b(q*)2(q)
n=0
+8¢(¢*) % (q)*.

Now,
(0% 0% oo (0% 6*)2% (0% 032 (65 0%) o0 (0723 4"
(6900 (45% 6% 00 (4 @)00(q*;4*)o0(4% ¢5) o
(¢%6*)3.(¢"% 0 (%503

(4% ¢%) (9% (0% ¢*)
(% ¢°)3. (0" 4" o 0(=¢%)

(455 ¢%) o v(—q)
_(%54*)3.(¢"% 4"
(55) = e (mod 2),

(q)2q) =

0% 0°)%(a*% ¢"%)%
(4% %)%
From (54) and using (55) and (56), it follows, modulo 128,

(2°:¢%)5 (4" a**)%
(4% %)%

(2°1¢*)3(a"% 4"
(4% ¢%)os

(56) II(q)*Q(q)* = (

~—

(mod 4).

ZWO(ZZM +18)¢" = 96¢p(¢>)*

n=0

+ 640(¢%) %Y (%) +80(¢°)°v(q®)*.

Hence it follows that,

> PP, (720 +42)¢" =0 (mod 128),

n=0
and

> PP, (72 +66)g" =0 (mod 128).
n=0 O

Proof of Theorem 1.7. From (31), we have

p(@)v(a)*

(57) > Pp,(4n +3)q" =16 o)

n=0
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From (21), we have ¢*(—q) = 1 (mod 8). Therefore, (57) yields, modulo 128,

> PP, (4n + 3)g" = 160(q)1b(¢*)?

n=0

(@*d°)% (%45
(¢ 9)3 (0% ¢%)3% (¢%:6%)3
(% ¢%)5 (a4")5
(93 (®:a*)%
2

(58) =16 (Y ()9 (%))
From (47) and (21), we obtain

=16

(59) > 55,80+ 6)¢" = 96 (¥(q)(¢%)”  (mod 128).
n=0
Now, from (58) and (59), we readily arrive at (9). O

We now prove a lemma which will be used to prove Theorem 1.8.

Lemma 5.1.

11 ¥(q°)
o e R a)
Proof. Using (15) and (25), we have

1 (5% vl T(¢®) +qv(d?)
x(=0? (9%  e(-9) (-9
~ (I(¢®) — 2q9(¢”)) + 3q¢(q°)
B ¢(—q)
(Whhsttats — 2= +3av(s”)
¢(—q)

6. 6 9. .92 3. .3 18, 18,2
e (e~ ) )
p(=q)
1 o(—¢°) — 209(—¢® 9 1 o
_ 3<p(q) ¢=q’) | 3 ¥(@) _ 3+3q7/)(Q).
x(=¢%) p(=q) p(=0) x(=¢%)  Te(-9) O
Proof of Theorem 1.8. From (30) and using (60), we have, modulo 72,

_ 2@ _ ¢ ()

o(—q)* o(—q)*

(B 1!
=8 on ‘8<xvﬂﬁ>

[oe]
> PP, (4n +2)q"

n=0
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3n+1

Now extracting the terms containing ¢ , we obtain, modulo 72,

V(g®)p(—¢%)®

xX(—q)3p(—q)*

0% 4%)% (@)% (5673 (%)%
3o (€%6°)3, (693 (9%
)

(@ 4)3

> Pp,(12n+ 6)q" = 24

n=0

((¢%6%)2.)% (@ 6%
(G 0)3)* (4545
(61) = 24(¢; 9) oo (0% 6%) o0 (6% 6%) 50 (4% ¢%) o-
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Recall the 3-dissection formulas deduce by M. D. Hirschhorn [9, 14.3.1] and

also by Z. Cao [5].
(62)  (4:90)o0(0%10%) 00 = (€°50") 0 (@ ¢"%) e (X(¢*) ™" — ¢ —26°X (%)),

where

. 6. 6)3
o= <<§3§Z§§°o£?q%qq§3§

Now from (61) and (62), we have, modulo 72

> pp,(12n 4 6)q"

n=0
= 24(¢%;0%) 00 (0% %) o0 (0% 0”) 0 (%5 ¢"%) oo (X (¢*) 7' — ¢ — 26° X (¢%)) .

3n+1

Extracting the terms containing ¢ , we obtain, modulo 72

(63) > DP,(36n+ 18)¢" = —24(¢; 0) oo (075 0°) o0 (0% 6%) 00 (¢°: ¢%) oo

n=0

Therefore by (62), (63), and using induction on «, for @ > 0, we obtain the

required result.
This completes the proof.

O
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