• Title/Summary/Keyword: Triacylglycerol synthesis

Search Result 39, Processing Time 0.019 seconds

Enzymatic Synthesis of Low Trans Fats Using Rice Bran Oil, Palm Stearin and High Oleic Sunflower Seed Oil (미강유, 팜스테아린 및 고올레인산 해바라기씨유를 이용한 저트랜스 유지의 효소적 합성)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.470-478
    • /
    • 2009
  • Low trans fats were synthesized by interesterification of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) using TLIM from Thermomyces lanuginosa. After 24-h reaction, physicochemical characteristics such as fatty acid and triacylglycerol composition, solid fat content, melting point, tocopherol, oryzanol and phytosterol contents were evaluated. Trans fatty acid contents of the produced low-trans fats showed less than 0.5 wt%. Mostly, triacylglycerol species in the products were palmitoyl-linoleoyl-oleoyl-glycerol (PLO), palmitoyl-oleoyl-oleoyl-glycerol (POO) and palmitoyl-oleoyl-palmitoyl-glycerol (POP). Total tocopherol contents ranged from 6.94 to 11.83 mg/100 g while $0.18{\sim}0.49$ mg/100 g of $\gamma$-oryzanol and $182.47{\sim}269.08$ mg/100 g of phytosterols were observed depending on the substrates ratios. When the content of PS in the reaction substrate was increased, solid fat content and slip melting points were increased.

Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

  • Liu, Lei;Li, Chunyan;Fu, Chunyan;Li, Fuchang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1748-1755
    • /
    • 2016
  • An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32) were allocated to two equal treatment groups: Fed basal diet (control) or fed basal diet with additional 200 mg/kg niacin supplementation (niacin). The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p<0.05), but significantly decreased the hepatic fatty acid synthase activity and adiponectin receptor 2, insulin receptor and acetyl-CoA carboxylase mRNA levels (p<0.05). Plasma insulin had a decreasing tendency in the niacin treatment group compared with control (p = 0.067). Plasma very low density lipoproteins, leptin levels and the hepatic adiponectin receptor 1 and carnitine palmitoyl transferase 1 genes expression were not significantly altered with niacin addition to the diet (p>0.05). However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05). In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

Microorganism lipid droplets and biofuel development

  • Liu, Yingmei;Zhang, Congyan;Shen, Xipeng;Zhang, Xuelin;Cichello, Simon;Guan, Hongbin;Liu, Pingsheng
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.575-581
    • /
    • 2013
  • Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from $CO_2$ via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.

Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

  • Qi, Lizhi;Yan, Sumei;Sheng, Ran;Zhao, Yanli;Guo, Xiaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.414-421
    • /
    • 2014
  • This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of ${\alpha}s1$-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 ${\mu}M$) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 ${\mu}M$ in a concentration-dependent manner, and the addition of 600 ${\mu}M$ was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

Glycolytic and oxidative muscles under acute glucose supplementation differ in their metabolic responses to fatty acyl-CoA synthetase gene suppression

  • Jung, Yun Hee;Bu, So Young
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.70-84
    • /
    • 2022
  • Purpose: Skeletal muscles display significant heterogeneity in metabolic responses, owing to the composition of metabolically distinct fiber types. Recently, numerous studies have reported that in skeletal muscles, suppression of genes related to fatty acid channeling alters the triacylglycerol (TAG) synthesis and switches the energy substrates. However, such responses may differ, depending on the type of muscle fiber. Hence, we conducted in vitro and animal studies to compare the metabolic responses of different types of skeletal muscle fibers to the deficiency of fatty acyl-CoA synthetase (Acsl)6, one of the main fatty acid-activating enzymes. Methods: Differentiated skeletal myotubes were transfected with selected Acsl6 short interfering RNA (siRNA), and C57BL/6J mice were subjected to siRNA to induce Acsl6 deficiency. TAG accumulation and expression levels of insulin signaling proteins in response to acute glucose supplementation were measured in immortalized cell-based skeletal myotubes, oxidative muscles (OM), and glycolytic muscles (GM) derived from the animals. Results: Under conditions of high glucose supplementation, suppression of the Acsl6 gene resulted in decreased TAG and glycogen synthesis in the C2C12 skeletal myotubes. The expression of Glut4, a glucose transporter, was similarly downregulated. In the animal study, the level of TAG accumulation in OM was higher than levels determined in GM. However, a similar decrease in TAG accumulation was obtained in the two muscle types in response to Acsl6 suppression. Moreover, Acsl6 suppression enhanced the phosphorylation of insulin signaling proteins (Foxo-1, mTORc-1) only in GM, while no such changes were observed in OM. In addition, the induction ratio of phosphorylated proteins in response to glucose or Acsl6 suppression was significantly higher in GM than in OM. Conclusion: The results of this study demonstrate that Acsl6 differentially regulates the energy metabolism of skeletal muscles in response to glucose supplementation, thereby indicating that the fiber type or fiber composition of mixed muscles may skew the results of metabolic studies.

Lipid Production Characteristics of the Basophilic Blue-Green Algae Arthrospira platensis Depending on pH for Alkaline Wastewater Treatment (알칼리성 폐수처리를 위한 호염기성 남조류 Arthrospira platensis의 pH에 따른 지질생성 특성)

  • Su-Hyeon Lee;Su-min Kwon;Sun-Jin Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.433-438
    • /
    • 2023
  • This study investigated the growth and metabolic characteristics of Arthrospira platensis (A. platensis) according to pH, which has an alkaline optimal pH. The intake of inorganic carbon was expected to be the highest at the optimum pH 9, but it was different from the expectation, so the cause of the excessive intake of inorganic carbon at pH 7 was investigated. We tried to verify the triacylglycerol (TAG) synthesis metabolic mechanism because it was assumedthat the inorganic carbon intake of A. platensis according to pH is closely related to lipid production inside the cell. To verify this, the effects of pH on inorganic carbon intake were examined through lipid analysis inthe cell of A. platensis according to pH. As a result, in the case of the effect of inorganic carbon intake of A. platensis according to pH on TAG content, pH 9 and pH 11 showed no significant difference in TAG content, but at pH 7, it was two times higher compared to pH 9 and pH 11. It was assumed that the reason why A. platensis excessively consumed inorganic carbon at pH 7 was because itincreased the TAG content in proportion to the intake of inorganic carbon to protect cells from external pH stress. In addition, it is considered that the TAG content produced in proportion to the intake of inorganic carbon is because acetyl-CoA produced in the Calvin cycle is required for the synthesis of TAG.

Current biotechnology for the increase of vegetable oil yield in transgenic plants (식물 지방산 생산량의 증진을 위한 생명공학 연구현황)

  • Lee, Kyeong-Ryeol;Choi, Yun-Jung;Kim, Sun-Hee;Roh, Kyung-Hee;Kim, Jong-Bum;Kim, Hyun-Uk
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.241-250
    • /
    • 2011
  • The most part of vegetable oils is accumulated as storage lipid, triacylglycerol (TAG) in seed and used as energy source when seed is germinated. It is also used as essential fatty acids and energy source for human and animal. Recently, vegetable oils have been more and more an important resource because of the increasing demand of vegetable oils for cooking and industrial uses for bio-diesel and industrial feedstock. In order to increase vegetable oils using biotechnology, over-expressing or repressing the regulatory genes involved in the flow of carbon into lipid biosynthesis is critical during seed development. In this review, we described candidate genes may influence oil amount and investigate their potential for oil increase. Genes involved in the regulation from biosynthesis of fatty acids to the accumulation oils in seed can be classified as follows: First, genes play a role for synthesis precursor molecules for TAG. Second, genes participate in fatty acid biosynthesis and TAG assembly. Lastly, genes encodes transcription factors involved in seed maturation and accumulation of seed oil. Because factors/genes determining oil quantity in seed is complex as mentioned, recently regulation of transcription factors is being considered more favorable approach than manipulate multiple genes for increasing oil in transgenic plants. However, it should be figured out the problem that bad agricultural traits induced by the overexpression of transcription factor gene.

Enzymatic Interesterification and Melting Characteristic for Asymmetric 1,2-Distearoyl-3-Oleoyl-rac-Glycerol Triacylglycerol Enriched Product (효소적 반응을 이용한 비대칭형 1,2-Distearoyl-3-Oleoyl-rac-Glycerol 혼합물의 생성 및 융점 특성)

  • Kim, Jin Young;Lee, Ki Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • Asymmetric 1,2-distearoyl-3-oleoyl-rac-glycerol (SSO) triacylglycerol (TAG) is used as a cocoa butter replacer (CBR). In this study, it was produced by lipase-catalyzed interesterification of fully hydrogenated soybean oil (FHSBO) and oleic ethyl ester (OEE) in a batch type reactor at $75^{\circ}C$, 250 rpm. Different molar ratios (FHSBO : OEE=1:1, 1:2 and 1:3, w/w) and various reaction times (1, 2, 3, 4, and 5 hr) were also tested. The optimized condition for SSO was a FHSBO : OEE molar ratio of =1:1 at reaction times of 2, 3, 4, and 5 hr. Enzymatic synthesis generated SSO/SOS, as well as the other TAGs (e.g., PSO/POS, SOO/OSO, SSS), ethyl esters, monoacylglycerol (MAG), and diacylglycerol (DAG). After scale-up, fractionation by solvent (methanol and acetone) fractionation and column chromatography was applied. To reduce ethyl esters, high-melting TAGs (e.g., SSS), and SOO/OSO in reactants, solvent fractionation was applied. Using a silica gel column (sample : silica gel=2:1, wt%), MAG and DAG were removed at $25^{\circ}C$. The major fatty acid composition of the final products (with a high SSO/SOS content) was palmitic acid (C16:0, 10.9~12.9 area%), stearic acid (C18:0, 52.2~54.9 area%), and oleic acid (C18:1, 34.2~35.5 area%). In reversed-phase HPLC analysis, the major TAG species of the final product (FHSBO : OEE=1:1, 2 hr) were SSO/SOS (82.31 area%) and PSO/POS (14.51 area%). Based on the $[SS]^+$ : $[SO]^+$ ratio obtained by RP-HPLC/APCI-MS, the final product had a higher SSO (AAB type TAG) content than cocoa butter (CB). The solid fat index (SFI) of CB and the final product obtained were similar with a narrow melting point range around ~32 to $35^{\circ}C$.

Lipase-Catalyzed Synthesis of Structured Lipids with Capric and Conjugated Linoleic Acid in a Stirred-Batch Type Reactor (대두유로부터 Lipase를 이용한 재구성 지질의 합성 및 특성)

  • 신정아;이기택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1175-1179
    • /
    • 2004
  • Structured lipid (SL) was produced from soybean oil with molar ratio of 1:2:2 (soybean oil:capric acid:CLA) using Chirazyme L-2 lipase (4% by weight of total substrates). The reaction was conducted for 24 hr at 55$^{\circ}C$ in a 1 L stirred-batch type reactor. SL-soybean oil contained 4.9 mol% capric acid and 4.1 mol% CLA, respectively. Iodine value of SL-soybean oil was reduced than that of soybean oil due to the incorporated capric acids. Tocopherol content in SL-soybean oil was 18.2 mg/l00 g. SL-soybean oil appeared more yellowish color than soybean oil. Reverse-phase HPLC showed that SL-triacylglycerol species containing capric acid consisted of about 12.6 area%.

Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

  • Zhu, Shuang;Park, Soyoung;Lim, Yeseo;Shin, Sunhye;Han, Sung Nim
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.477-486
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS: Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS: In intestine, significantly lower Cd36 mRNA expression (P<0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P<0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS: PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice.