Browse > Article
http://dx.doi.org/10.5713/ajas.15.0824

Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits  

Liu, Lei (Department of Animal Science, Shandong Agricultural University)
Li, Chunyan (Department of Animal Science, Shandong Agricultural University)
Fu, Chunyan (Department of Animal Science, Shandong Agricultural University)
Li, Fuchang (Department of Animal Science, Shandong Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.12, 2016 , pp. 1748-1755 More about this Journal
Abstract
An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32) were allocated to two equal treatment groups: Fed basal diet (control) or fed basal diet with additional 200 mg/kg niacin supplementation (niacin). The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p<0.05), but significantly decreased the hepatic fatty acid synthase activity and adiponectin receptor 2, insulin receptor and acetyl-CoA carboxylase mRNA levels (p<0.05). Plasma insulin had a decreasing tendency in the niacin treatment group compared with control (p = 0.067). Plasma very low density lipoproteins, leptin levels and the hepatic adiponectin receptor 1 and carnitine palmitoyl transferase 1 genes expression were not significantly altered with niacin addition to the diet (p>0.05). However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05). In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.
Keywords
Niacin; Liver; Lipid Metabolism; Rabbits;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hamaguchi, M., T. Kojima, N. Takeda, T. Nakagawa, H. Taniguchi, K. Fujii, T. Omatsu, T. Nakajima, H. Sarui, and M. Shimazaki et al. 2005. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann. Intern. Med. 143:722-728.   DOI
2 Havel, P. J. 2004. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:143-151.   DOI
3 Jin, F. Y., V. S. Kamanna, and M. L. Kashyap. 1997. Niacin decreases removal of high-density lipoprotein apolipoprotein AI but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 17:2020-2028.   DOI
4 Kamanna, V. S., S. H. Ganji, and M. L. Kashyap. 2013. Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol. 24:239-245.   DOI
5 Kitamura, T., Y. Feng, Y. I. Kitamura, S. C. Chua Jr., A. W. Xu, G. S. Barsh, L. Rossetti, and D. Accili. 2006. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12:534-540.   DOI
6 Peng, Y., D. Rideout, S. Rakita, M. Sajan, R. Farese, M. You, and M. M. Murr. 2009. Downregulation of adiponectin/AdipoR2 is associated with steatohepatitis in obese mice. J. Gastrointest. Surg. 13:2043-2049.   DOI
7 Pullen, D. L., J. S. Liesman, and R. S. Emery. 1990. A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J. Anim. Sci. 68:1395-1399.   DOI
8 Reddy, J. K. and M. S. Rao. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852-G858.   DOI
9 Rubic, T., M. Trottmann, and R. L. Lorenz. 2004. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP binding cassette A1 in monocytoid cells by niacin. Biochem. Pharmacol. 67:411-419.   DOI
10 Ruzzin, J., R. Petersen, E. Meugnier, L. Madsen, E. J. Lock, H. Lillefosse, T. Ma, S. Pesenti, S. B. Sonne, T. T. Marstrand, and M. K. Malde et al. 2010. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ. Health Perspect. 118:465-471.
11 Salhanick, A. I., S. I. Schwartz, J. M. Amatruda. 1991. Insulin inhibits apolipoprotein B secretion in isolated human hepatocytes. Metabolism 40:275-279.   DOI
12 Saltiel, A. R. and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806.   DOI
13 Simon, J., P. Freychet, and G. Rosselin. 1974. Chicken insulin: radioimmunological characterization and enhanced activity in rat fat cells and liver plasma membranes. Endocrinology 95:1439-1449.   DOI
14 Browning, J. D., L. S. Szczepaniak, R. Dobbins, P. Nuremberg, J. D. Horton, J. C. Cohen, S. M. Grundy, and H. H. Hobbs. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387-1395.   DOI
15 Bai, Y., S. Zhang, K. S. Kim, J. K. Lee, and K. H. Kim. 1996. Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J. Biol. Chem. 271:13939-13942.   DOI
16 Barter, P. J. and J. I. Lally. 1978. Metabolism of esterified cholesterol in the plasma very low density lipoproteins of the rabbit. Atherosclerosis 31:355-364.   DOI
17 Berg, A. H., T. P. Combs, and P. E. Scherer. 2002. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13:84-89.   DOI
18 Buettner, C., E. D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, and J. Harvey-White et al. 2008. Leptin controls adipose tissue lipogenesis via central, STAT3- independent mechanisms. Nat. Med. 14:667-675.   DOI
19 Cho, K. H., H. J. Kim, V. S. Kamanna, and N. D. Vaziri. 2010. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim. Biophys. Acta 1800:6-15.   DOI
20 Carling, D., M. J. Sanders, and A. Woods. 2008. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes. 32:S55-S59.
21 Cruz-Bautista, I., R. Mehta, J. Cabiedes, C. Garcia-Ulloa, L. E. Guillen-Pineda, P. Almeda-Valdes, D. Cuevas-Ramos, and C. A. Aguilar-Salinas. 2015. Determinants of VLDL composition and apo B-containing particles in familial combined hyperlipidemia. Clin. Chim. Acta 438:160-165.   DOI
22 De blas, C. and G. G. Mateos. 1998. Feed formulation. In: Nutrition of the Rabbit (Eds. C. de Blas and J. Wiseman). CAB International, Wallingford, UK. pp. 222-232.
23 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25:402-408.   DOI
24 Lamon-Fava, S., M. R. Diffenderfer, P. H. R. Barrett, A. Buchsbaum, M. Nyaku, K. V. Horvath, B. F. Asztalos, S. Otokozawa, M. Ai, and N. R. Matthan et al. 2008. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28:1672-1678.   DOI
25 Lillie, R. D. and H. M. Fullmer. 1976. Histopathologic Technic and Practical Histochemistry. 4th edn. McGraw-Hill, London, UK.
26 Li, X., J. S. Millar, N. Brownell, F. Briand, and D. J. Rader. 2010. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem. Pharmacol. 80:1450-1457.   DOI
27 Li, Y., G. Qin, J. Liu, L. Mao, Z. Zhang, and J. Shang. 2014. Adipose tissue regulates hepatic cholesterol metabolism via adiponectin. Life Sci. 118:27-33.   DOI
28 Lin, Z., X. Pan, F. Wu, D. Ye, Y. Zhang, Y. Wang, L. Jin, Q. Lian, Y. Huang, and H. Ding et al. 2015. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131:1861-1871.   DOI
29 Matsusue, K., M. Haluzik, G. Lambert, S. H. Yim, O. Gavrilova, J. M. Ward, B. Brewer Jr., M. L. Reitman, and F. J. Gonzalez. 2003. liver-specific disruption of $ppar{\gamma}$ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111:737-747.   DOI
30 Nakae, J. and D. Accili. 1999. The mechanism of insulin action. J. Pediatr. Endocrinol. Metab. 12:721-731.
31 Nguyen, P., V. Leray, M. Diez, S. Serisier, J. Le Bloc'h, B. Siliart, and H. Dumon. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92:272-283.   DOI
32 Wise, A., S. M. Foord, N. J. Fraser, A. A. Barnes, N. Elshourbagy, M. Eilert, D. M. Ignar, P. R. Murdock, K. Steplewski, and A. Green et al. 2003. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278:9869-9874.   DOI
33 Anania, F. A. 2002. Leptin, liver, and obese mice--fibrosis in the fat lane. Hepatology 36:246-248.
34 Asai, A. and T. Miyazawa. 2001. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J. Nutr. 131:2932-2935.   DOI
35 Fabbrini, E., B. S. Mohammed, K. M. Korenblat, F. Magkos, J. McCrea, B. W. Patterson, and S. Klein. 2010. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 95:2727-2735.   DOI
36 Gallardo, N., E. Bonzon-Kulichenko, T. Fernandez-Agullo, E. Molto, S. Gomez-Alonso, P. Blanco, J. M. Carrascosa, M. Ros, and A. Andres. 2007. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology 148:5604-5610.   DOI
37 Ganji, S. H., M. L. Kashyap, and V. S. Kamanna. 2015. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism 64:982-990.   DOI
38 Paulauskis, J. D. and H. S. Sul. 1989. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264:574-577.
39 van der Hoorn, J. W., W. de Haan, J. F. Berbee, L. M. Havekes, J. W. Jukema, P. C. Rensen, and H. M. Princen. 2008. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE* 3Leiden. CETP mice. Arterioscler Thromb. Vasc. Biol. 28:2016-2022.   DOI
40 Weibel, E. R. and R. P. Bolender. 1973. Stereological techniques for electron microscopic morphometry. In: Principles and Techniques of Electron Microscopy (Ed. M. A. Hayat). Van Nostrand Rheinhold Company, New York, pp. 237-296.
41 Xu, A., Y. Wang, H. Keshaw, L. Y. Xu, K. S. Lam, and G. J.Cooper. 2003. The fat-derived hormone adiponectin alleviatesalcoholic and nonalcoholic fatty liver diseases in mice. J. Clin.Invest. 112:91-100.   DOI
42 Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara,Y. Mori, T. Ide, K. Murakami, and N. Tsuboyama-Kasaoka etal. 2001. The fat-derived hormone adiponectin reverses insulinresistance associated with both lipoatrophy and obesity. Nat.Med. 7:941-946.   DOI