• Title/Summary/Keyword: Tree stiffness

Search Result 12, Processing Time 0.023 seconds

Time Historical Response Analysis of Tree Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 분기형 구조물의 시긴이력응답해석)

  • 문덕홍;강현석;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.426-431
    • /
    • 1998
  • This, paper describes formulation for time historical response analysis of vibration for tree structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark-.betha. method. And This present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the tree structure. The validity of the present method compared with the transfer matrix method and the FEM(Finite Element Method) for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.

Automatic Defect Detection from SEM Images of Wafers using Component Tree

  • Kim, Sunghyon;Oh, Il-seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2017
  • In this paper, we propose a novel defect detection method using component tree representations of scanning electron microscopy (SEM) images. The component tree contains rich information about the topological structure of images such as the stiffness of intensity changes, area, and volume of the lobes. This information can be used effectively in detecting suspicious defect areas. A quasi-linear algorithm is available for constructing the component tree and computing these attributes. In this paper, we modify the original component tree algorithm to be suitable for our defect detection application. First, we exclude pixels that are near the ground level during the initial stage of component tree construction. Next, we detect significant lobes based on multiple attributes and edge information. Our experiments performed with actual SEM wafer images show promising results. For a $1000{\times}1000$ image, the proposed algorithm performed the whole process in 1.36 seconds.

A Study on the Analysis Algorithm of Time Historical Response of Straight-line Structure by the Transfer Stiffness Coefficient Method (전달강성계수법에 의한 직선형 구조물의 시간 이력응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 1999
  • This paper describes formulation for algorithm of time historical response analysis of vibration for straight-line structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark method. And this present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the straight-line structure containing crooked, tree type system. The validity of the present method compared with the transfer matrix method and the Finite Element Method for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

Machine Learning-Based Retrofit Scheme Development for Seismically Vulnerable Reinforced Concrete School Buildings (기계학습기반 기둥 파괴유형 분류모델을 활용한 학교건축물의 내진보강전략 구축)

  • Kim, Subin;Choi, Insub;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.275-283
    • /
    • 2024
  • Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.

After-treatment of Jumchi Technique for using Dakji as Clothing Material (닥지의 의류소재 활용을 위한 줌치기법의 후처리)

  • Kim, Jung-Ju;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.6 no.2
    • /
    • pp.245-248
    • /
    • 2004
  • This study examied ned physical properties and surface characteristics of papers post-processed by Jumchi technique and stainability of extract from Amur Cork-Tree to use Dakji as clothing material. Then, it found the following results. After-treatment by Amorphophalus konjac K. Koch and persimmon juice showed stronger tensile strength and tearing strength than untreated samples and the drape stiffness was substantially increased. After-treatment by persimmon juice generated dyeing effects as well as excellent tensile strength and tearing strength all samples were generally dyed well by Amur Cork-Tree, While the untreated samples did not show any significant effects in dyeing for more than 5 minutes. It was found that after-treatment substantially contributed on concentration of dyeing as dyeing amounts of post-processed samples were gradually increased as time increased. After-treated sample with agar did not show any significant differences from untreated sample. Accordingly, it has to be studied further.

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF

Study on Effective Use of Aged Chestnut Woods as Furniture Materials (가구재로써 노령 밤나무재의 효율적 이용에 관한 연구)

  • Moon Sun-Ok;Kim Chul-Hwan;Kim Jong-Gab
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.2
    • /
    • pp.53-62
    • /
    • 2004
  • This study explored the development of wood furniture made of aged Castanea crenata Sieb. et Zucc, which has been largely planted in the southern area since 1960s and has hardly been used as furniture materials. First, the physical properties of the chestnut wood including specific gravity, stiffness, and shrinkage were compared with Zelkova serrata, Acer palmatum Thunb., Fagus crenata var. multinevis, Quercus, Tagayasan, Prunus serrulata var. spontanea, Juglans sinenis, Pteronrpus santalinus, Diospyros ebenum, and Fraxinus rhynchophylla, which have largely been used in manufacturing furniture. The chestnut wood had appropliate physical properties for wood furniture like other furniture woods. A piece of small table 50 cm in width, 50 cm in length and 60 cm in height by the chestnut tree was created for a current interior space. Since the diameter of the chestnut tree planted since 1960s is below around 30 cm, the top plate of the table had to be put together by an end-joint technique using a small strip. Finally, it is expected that this study will create a greate motivation for furniture designers, furniture studios and furniture companies in Korea to use the woods from the aged chestnut tree in developing furniture in the future.

  • PDF

Pushover Tests of 1 : 5 Scale 3-Story Reinforced Concrete Frames (1 : 5 축소 3층 철근콘크리트 골조의 횡방향 가력실험)

  • 이한선;우성우;허윤섭;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.529-536
    • /
    • 1999
  • The objective of the research stated herein is to observe th elastic and inelastic behaviors and ultimate capacity of 1 : 5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames without and with infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained to be an inverted triangle by using the whiffle tree. From the results of tests, the relations between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry are investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry are compared.

  • PDF

Structural Test and Safety Evaluation for Fin Assembly of Scientific Sound Rocket (과학로케트 날개조립체의 구조강도시험 및 안전성 평가)

  • 허용학;김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3395-3403
    • /
    • 1994
  • The structural test technique and equipment for strength test of astronautical structures, such as rocket, were presented in this paper. Structural strength tests of the fin assembly with fin and fin frame in the scientific sound rocket were performed with load levels of 100% limit load and 150% ultimate load of design lift force. Safety factors in each part of the fin assembly were calculated at these two load levels and the stiffnesses based on the measured deflection of fin assembly and strains on fin and fin frame were evaluated at these two load level. As the result of structural test, the fin assembly was estimated to be safe.