Vaccinium oldhami Miq. is a Korean native tree, which is deciduous and shrub tree with broad leaf. It grows 1~4m in height generally. Ecologically, this tree grows well in shady place even in barren soil. Also, the tree has resistance to cold and dry, which tend to form a little community. This research investigates quantitative morphological characteristics of leaf and fruit among the V. oldhami in South Korea and then considers its relationship on the basis of raw data among the 10 populations. This study will give us invaluable information about growing conditions, reasonable management and breeding by selection of V. oldhami in South Korea. The main results obtained from this study are summarized as follows; Leaf size of Mudeung population was larger than other populations. Naebyeon population was smaller in size of the leaf than other populations. Anmyeondo population was larger in fruit characteristics compared with other populations and Deogyu population was the smallest among populations. According to cluster analysis based on the leaf and fruit morphological characteristics, the natural V. oldhami populations were classified into four groups such as the first group of Kumo population, the second group of Mudeung population, the third group of Anmyundo, Daedun, Doolyun population and the fourth group of the other five populations.
International Journal of Computer Science & Network Security
/
제23권7호
/
pp.186-192
/
2023
Malwares are becoming a major problem nowadays all around the world in android operating systems. The malware is a piece of software developed for harming or exploiting certain other hardware as well as software. The term Malware is also known as malicious software which is utilized to define Trojans, viruses, as well as other kinds of spyware. There have been developed many kinds of techniques for protecting the android operating systems from malware during the last decade. However, the existing techniques have numerous drawbacks such as accuracy to detect the type of malware in real-time in a quick manner for protecting the android operating systems. In this article, the authors developed a hybrid model for android malware detection using a decision tree and KNN (k-nearest neighbours) technique. First, Dalvik opcode, as well as real opcode, was pulled out by using the reverse procedure of the android software. Secondly, eigenvectors of sampling were produced by utilizing the n-gram model. Our suggested hybrid model efficiently combines KNN along with the decision tree for effective detection of the android malware in real-time. The outcome of the proposed scheme illustrates that the proposed hybrid model is better in terms of the accurate detection of any kind of malware from the Android operating system in a fast and accurate manner. In this experiment, 815 sample size was selected for the normal samples and the 3268-sample size was selected for the malicious samples. Our proposed hybrid model provides pragmatic values of the parameters namely precision, ACC along with the Recall, and F1 such as 0.93, 0.98, 0.96, and 0.99 along with 0.94, 0.99, 0.93, and 0.99 respectively. In the future, there are vital possibilities to carry out more research in this field to develop new methods for Android malware detection.
최근 들어 계속되는 램 가격 하락으로 인해 대용량의 램을 사용하는 주기억 데이터베이스 시스템의 구축이 실현 가능하게 되었다. 그러나 기존의 디스크 기반 공간 색인 기법은 디스크 접근 시간만을 주로 고려하기 때문에, 주기억 색인 기법으로 디스크 기반 색인 기법을 직접적으로 적용시키는 것은 부적절하다. 주기억 장치 색인 기법은 모든 색인 노드들이 주기억 장치에 상주하기 때문에 노드에 대한 접근 시간이 디스크 기반 기법에 비해 상당히 미미하고, 결국 효율적인 색인 기법을 위해서는 노드 접근시간 뿐만 아니라 노드내의 키 비교시간을 고려해야 한다. 이러한 주기억 장치 색인 기법의 특성을 고려하여, 본 논문에서는 Tmr-트리라는 새로운 색인 기법을 제시한다. Tmr-트리는 T-트리의 장점과 R-트리의 장점을 결합한 이진 색인 구조로서, 색인 노드는 데이터 객체들을 위한 엔트리들, 왼쪽/오른쪽 자식 노드에 대한 포인터, 그리고 3개의 추가 필드들로 구성된다. 여기서 3개의 추가 필드들은 현재 노드에 저장된 키 값들의 범위를 포함하는 MBR과 왼쪽 서브트리에 저장된 키 값들의 범위를 포함하는 MBR, 오른쪽 서브트리에 저장된 키 값들의 범위를 포함하는 MBR에 해당한다. 본 논문의 실험에서 Tmr-트리는 R-트리와 달리 검색 시 항상 리프노드까지 방문할 필요가 없기 때문에 모든 데이터 분포에서 R-트리에 비해 더 나은 실험 결과를 보여주었다. 노드 크기 측면에서 노드안 엔트리 수를 증가시킨 초반에 상당한 검색성능 향상을 보여주었으며, 그 후로 약간씩 검색시간 증가를 나타냈다. 한편, 삽입시간 측면에서 Tmr-트리는 R-트리에 비해 약간의 더 많은 삽입시간이 필요했다.
XLPE compound have used for insulation of 22.9kV power cable. XLPE insulation is aged for use long time in distribution line. The cause of aging is water tree is happening and growth. Accelerated water tree test method are Accelerated volatge aging method and high frequency aging method. In this paper, high frequency accelerated water tree was performed. And the result was analysed AC breakdown voltage and size and number of water trees.
The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.
Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.
Leaf blight outbreak was investigated in sweet persimmon tree orchards in Korea during a three-year period from 1995 to 1997. The man percentage of sweet perismmon leaves blighted by Pestalotiopsis theae was 15.9%. The highest disease incidence was surveyed to 20% in Milryang. The disease began from early June to late October, and peaked in September and October. The lesion size on leaf ranged mainly 1-3 cm. The typical symptoms were large grayish concentric lesions of oval patterns of either mesophyll or margin of the leaf, and olde trees were more susceptible than younger ones.
Classification tree is one of the most suitable base learners for ensemble. For past decade, it was found that bagging gives the most accurate prediction when used with unpruned tree and boosting with stump. Researchers have tried to understand the relationship between the size of trees and the accuracy of ensemble. With experiment, it is found that large trees make boosting overfit the dataset and stumps help avoid it. It means that the accuracy of each classifier needs to be sacrificed for better weighting at each iteration. Hence, split effect in boosting can be explained with the trade-off between the accuracy of each classifier and better weighting on the misclassified points. In bagging, combining larger trees give more accurate prediction because bagging does not have such trade-off, thus it is advisable to make each classifier as accurate as possible.
A dynamic relocation algorithm for non-deterministic process graph in distributed computer systems is proposed. A method is represented for determining the optimal policy for processing a process tree. A general database query request is modelled by a process tree which represent a set of subprocesses together with their precedence relationship. The process allocation model is based on operating cost which is a function fo selection of site for processing operation, data reduction function and file size. By using expected values of parameters for non-deterministic process tree, the process graph and optimal policy that yield minimum operating cost are determined. As process is relocated according to threshold value and new information of parameters after the execution of low level process for non-deterministic process graph, the assigned state that approximate to optiaml solution is obtained. The proposed algorihtm is heuristic By performing algorithm for sample problems, it is shown that the proposed algorithm is good in obtaining optimal solution.
Solid insulation exposed to voltage is degraded by electrical tree process. And the degradation of the insulation is accelerated by voltage application. For this experimental, specimen of e1ectrical tree model is made by XLPE (cross-linked polyethylene). And the size of the specimen is $7*5*7\;mm^3$. Distance of need1e and plane is 2 mm. Voltages applied for acceleration test are 12 kV to 15 kV. And distribution characteristic of degraded stage is studied too. As a PD detecting and data process, discharge data acquire from PD detecting system (Biddle instrument). The system presents statistical distribution as phase resolved. Moreover the processing time of electrical tree is recorded to know the speed of degradation according to voltage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.