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Split Effect in Ensemble

Dongjun Chung!), Hyunjoong Kim?2)
Abstract

Classification tree is one of the most suitable base learners for ensemble. For
past decade, it was found that bagging gives the most accurate prediction when
used with unpruned tree and boosting with stump. Researchers have tried to
understand the relationship between the size of trees and the accuracy of
ensemble. With experiment, it is found that large trees make boosting overfit the
dataset and stumps help avoid it. It means that the accuracy of each classifier
needs to be sacrificed for better weighting at each iteration. Hence, split effect in
boosting can be explained with the trade-off between the accuracy of each
classifier and better weighting on the misclassified points. In bagging, combining
larger trees give more accurate prediction because bagging does not have such
trade-off, thus it is advisable to make each classifier as accurate as possible.
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1. Introduction

Ensemble has been known as one of the most powerful classification methods that
improve the prediction accuracy dramatically. Breiman (1998) referred ensemble as the
"perturb and combine” strategy. Ensemble method generates multiple versions of predictions
by perturbing the training dataset and combines these multiple versions of predictions into a
single predictor. Bagging (Breiman, 1996) and boosting (AdaBoost.M1; Freund and Schapire,
1996) are most famous and successful ones among those. Bagging perturbs the dataset by
using bootstrap then combines the predictions from the perturbed dataset with unweighted
majority voting. Boosting increases weight on the misclassified observations through
iterations and predicts using the updated weights. It combines these predictions with
weighted majority voting by giving more weights on more accurate predictions.

Ensemble method improves the original predictions especially when unstable classifiers
are combined such as classification trees. For this reason, many researchers have developed
new ensemble methods based on classification trees. The number of splits (the size of tree)
is an important parameter to control the accuracy of trees. A single tree is most accurate
when it is pruned. However, this is not true in ensemble. Researchers found that combining
unpruned trees gives the most accurate predictions in bagging and stump (2-terminal-node
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tree) in boosting.
2. Explanation

2.1. Literature

The relationship between the number of splits and the accuracy of ensemble has been
studied especially on boosting. Drucker (2000) claimed that combining unpruned trees gives
the most accurate predictions in boosting when using "Z-criterion” to build the trees.
Friedman (2001) explained the number of splits as the order of interactions considered in
the model. In most practical cases, the main effect and lower interactions usually dominate
the model. Hence, he claimed smaller trees perform better in boosting because the model is
not influenced by the higher interactions that are not essentially needed in the model. He
suggested to use trees with 4-10 splits.

2.2. New Explanation

The success of stump in boosting can be explained by the view of better weighting.
As already mentioned, boosting gives more weight on the misclassified observations. The
training error rate at each iteration decreases as the number of splits increases (or trees
become larger). It means that boosting gives more weight on the smaller set of
observations at the next iteration. In later iterations, boosting gives much weight on a few
but 'hard to predict’ observations. When large trees are used in boosting, this phenomenon
becomes more apparent. As a result, a few outliers might dominate the weight used in
constructing classification trees. This results in poor performance in each iteration of
boosting procedure. On the other hand, the stump would not suffer the above problem.

3. Experiment

To verify our explanation, we experimented on the simulation data. Simulation was
iterated 100 times with 500 samples generated for each class. The training dataset and the
test dataset were generated independently from the following distribution:

Logit(p) = sin(3x | +5x4) —x 3—2x ,+4x s+, £~N(0,5)
(%1,%9,%3,%4,%5) ~N5((0,0,0,0,0)", diag(1,4,7,2,5))

Y=[1 , $=0.5
0, #<0.5

CART (Breiman et al, 1984) was used for the classification tree algorithm. The
number of bootstrap samples in bagging and the number of iterations in boosting were
fixed as 50. For implementation, R 2.1.1 was used. CART algorithm was implemented using
the function rpart() in the library rpart. Bagging was programmed based on Breiman (1996)
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and boosting based on the algorithm of AdaBoost.M1 in Hastie et al. (2001).

3.1. Measure

Two measures were used: sum of normalized weights on each observation (only for
boosting) and test error rate after voting (both for bagging and boosting). Measures are

defined as following:

test error rate = #(misclassification) / size of test dataset

sum of normalized weights i Wi
=Y

th .
on kK observation

N

where w ; are the weights on each observation, S; = Zw,-j, B the number of iterations
i=1

and k=1,2,...,/V. Sum of normalized weights on each observation indicates how many
points are overweighted by boosting. Test error rate after voting indicates whether

ensemble overfits the dataset or not.

3.2. Split Effect in Bagging

To understand split effect in bagging, three different number of splits were tried:
stump, 3-split tree, 5-split tree. Figure 1 indicates that the test error rate after voting
decreases as the number of splits increases. We can conclude that combining better
classifiers gives better accuracy for bagging.
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Figure 1. Test error rate of bagging, after combining k bootstrap samples
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3.3. Split Effect in Boosting

Three different number of splits are tried: stump, 3-split tree and 5-split tree. The
result of figure 2 was obtained from the experiment with slightly different setting from
above because observations need to be fixed over iterations. 100 samples were generated for
each class, and their weights are updated as the iterations continue.

Figure 2 shows sum of normalized weights of the observations sorted in ascending
order. The figure indicates that boosting with 5-split tree gives much more weight on the
smaller set of observations than boosting with stump or 3-split tree. Figure 3 shows that
the test error rate after voting increases as trees become larger. This is more apparent as
the number of iterations becomes larger. These figures indicate that the accuracy suffers
when boosting combines large trees. Hence, it can be concluded that avoiding such
concentration on a few observations make stump to perform better in boosting.

4. Conclusion

We examined the relationship between the size of trees and the accuracy of ensemble
methods. We found that the relationship was positive for bagging, but negative for
boosting. Since bagging uses equal weights on the predictions of each iteration, it would be
better to predict well on each iteration. However, since boosting updates weights on each
observation, it overweights some observations if a large-sized tree is used. Due to the
overweight problem, it was found that the stump performed better for boosting.
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Figure 2. Sum of normalized weights on each observation in boosting
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Figure 3. Test error rate of boosting, after combining k iterations
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