• Title/Summary/Keyword: Tree Detection

Search Result 527, Processing Time 0.026 seconds

Improving Performance of Change Detection Algorithms through the Efficiency of Matching (대응효율성을 통한 변화 탐지 알고리즘의 성능 개선)

  • Lee, Suk-Kyoon;Kim, Dong-Ah
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.145-156
    • /
    • 2007
  • Recently, the needs for effective real time change detection algorithms for XML/HTML documents and increased in such fields as the detection of defacement attacks to web documents, the version management, and so on. Especially, those applications of real time change detection for large number of XML/HTML documents require fast heuristic algorithms to be used in real time environment, instead of algorithms which compute minimal cost-edit scripts. Existing heuristic algorithms are fast in execution time, but do not provide satisfactory edit script. In this paper, we present existing algorithms XyDiff and X-tree Diff, analyze their problems and propose algorithm X-tree Diff which improve problems in existing ones. X-tree Diff+ has similar performance in execution time with existing algorithms, but it improves matching ratio between nodes from two documents by refining matching process based on the notion of efficiency of matching.

On the Hardware Complexity of Tree Expansion in MIMO Detection

  • Kong, Byeong Yong;Lee, Youngjoo;Yoo, Hoyoung
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.136-141
    • /
    • 2021
  • This paper analyzes the tree expansion for multiple-input multiple-output (MIMO) detection in the viewpoint of hardware implementation. The tree expansion is to calculate path metrics of child nodes performed in every visit to a node while traversing the detection tree. Accordingly, the tree-expansion unit (TEU), which is responsible for such a task, has been an essential component in a MIMO detector. Despite the paramount importance, the analyses on the TEUs in the literature are not thorough enough. Accordingly, we further investigate the hardware complexity of the TEUs to suggest a guideline for selection. In this paper, we focus on a pair of major ways to implement the TEU: 1) a full parallel realization; 2) a transformation of the formulae followed by common subexpression elimination (CSE). For a logical comparison, the numbers of multipliers and adders are first enumerated. To evaluate them in a more practical manner, the TEUs are implemented in a 65-nm CMOS process, and their propagation delays, gate counts, and power consumptions were measured explicitly. Considering the target specification of a MIMO system and the implementation results comprehensively, one can choose which architecture to adopt in realizing a detector.

Detection Techniques for MIMO Multiplexing: A Comparative Review

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.647-666
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) multiplexing is an attractive technology that increases the channel capacity without requiring additional spectral resources. The design of low complexity and high performance detection algorithms capable of accurately demultiplexing the transmitted signals is challenging. In this technical survey, we introduce the state-of-the-art MIMO detection techniques. These techniques are divided into three categories, viz. linear detection (LD), decision-feedback detection (DFD), and tree-search detection (TSD). Also, we introduce the lattice basis reduction techniques that obtain a more orthogonal channel matrix over which the detection is done. Detailed discussions on the advantages and drawbacks of each detection algorithm are also introduced. Furthermore, several recent author contributions related to MIMO detection are revisited throughout this survey.

Decision Tree Techniques with Feature Reduction for Network Anomaly Detection (네트워크 비정상 탐지를 위한 속성 축소를 반영한 의사결정나무 기술)

  • Kang, Koohong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.795-805
    • /
    • 2019
  • Recently, there is a growing interest in network anomaly detection technology to tackle unknown attacks. For this purpose, diverse studies using data mining, machine learning, and deep learning have been applied to detect network anomalies. In this paper, we evaluate the decision tree to see its feasibility for network anomaly detection on NSL-KDD data set, which is one of the most popular data mining techniques for classification. In order to handle the over-fitting problem of decision tree, we select 13 features from the original 41 features of the data set using chi-square test, and then model the decision tree using TensorFlow and Scik-Learn, yielding 84% and 70% of binary classification accuracies on the KDDTest+ and KDDTest-21 of NSL-KDD test data set. This result shows 3% and 6% improvements compared to the previous 81% and 64% of binary classification accuracies by decision tree technologies, respectively.

Automated Individual Tree Detection and Crown Delineation Using High Spatial Resolution RGB Aerial Imagery

  • Park, Tae-Jin;Lee, Jong-Yeol;Lee, Woo-Kyun;Kwak, Doo-Ahn;Kwak, Han-Bin;Lee, Sang-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.703-715
    • /
    • 2011
  • Forests have been considered one of the most important ecosystems on the earth, affecting the lives and environment. The sustainable forest management requires accurate and timely information of forest and tree parameters. Appropriately interpreted remotely sensed imagery can provide quantitative data for deriving forest information temporally and spatially. Especially, analysis of individual tree detection and crown delineation is significant issue, because individual trees are basic units for forest management. Individual trees in aerial imagery have reflectance characteristics according to tree species, crown shape and hierarchical status. This study suggested a method that identified individual trees and delineated crown boundaries through adopting gradient method algorithm to amplified greenness data using red and green band of aerial imagery. The amplification of specific band value improved possibility of detecting individual trees, and gradient method algorithm was performed to apply to identify individual tree tops. Additionally, tree crown boundaries were explored using spectral intensity pattern created by geometric characteristic of tree crown shape. Finally, accuracy of result derived from this method was evaluated by comparing with the reference data about individual tree location, number and crown boundary acquired by visual interpretation. The accuracy ($\hat{K}$) of suggested method to identify individual trees was 0.89 and adequate window size for delineating crown boundaries was $19{\times}19$ window size (maximum crown size: 9.4m) with accuracy ($\hat{K}$) at 0.80.

A Comparative Study on the Performance of Intrusion Detection using Decision Tree and Artificial Neural Network Models (의사결정트리와 인공 신경망 기법을 이용한 침입탐지 효율성 비교 연구)

  • Jo, Seongrae;Sung, Haengnam;Ahn, Byunghyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.33-45
    • /
    • 2015
  • Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.

Short-range sensing for fruit tree water stress detection and monitoring in orchards: a review

  • Sumaiya Islam;Md Nasim Reza;Shahriar Ahmed;Md Shaha Nur Kabir;Sun-Ok Chung;Heetae Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.883-902
    • /
    • 2023
  • Water is critical to the health and productivity of fruit trees. Efficient monitoring of water stress is essential for optimizing irrigation practices and ensuring sustainable fruit production. Short-range sensing can be reliable, rapid, inexpensive, and used for applications based on well-developed and validated algorithms. This paper reviews the recent advancement in fruit tree water stress detection via short-range sensing, which can be used for irrigation scheduling in orchards. Thermal imagery, near-infrared, and shortwave infrared methods are widely used for crop water stress detection. This review also presents research demonstrating the efficacy of short-range sensing in detecting water stress indicators in different fruit tree species. These indicators include changes in leaf temperature, stomatal conductance, chlorophyll content, and canopy reflectance. Short-range sensing enables precision irrigation strategies by utilizing real-time data to customize water applications for individual fruit trees or specific orchard areas. This approach leads to benefits, such as water conservation, optimized resource utilization, and improved fruit quality and yield. Short-range sensing shows great promise for potentially changing water stress monitoring in fruit trees. It could become a useful tool for effective fruit tree water stress management through continued research and development.

A Study on Hybrid Feature Selection in Intrusion Detection System (침입탐지시스템에서 하이브리드 특징 선택에 관한 연구)

  • Han Myeong-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • 네트워크를 기반으로 한 컴퓨터 시스템이 현대 사회에 있어서 더욱 더 불가결한 역할을 하는 것에 따라, 네트워크 기반 컴퓨터 시스템은 침입자의 침입 목표가 되고 있다. 이를 보호하기 위한 침입탐지시스템(Intrusion Detection System : IDS)은 점차 중요한 기술이 되었다. 침입탐지시스템에서 패턴들을 분석한 후 정상/비정상을 판단 및 예측하기 위해서는 초기단계인 특징추출이나 선택이 매우 중요한 부분이 되고 있다. 본 논문에서는 IDS에서 중요한 부분인 feature selection을 Data Mining 기법인 Genetic Algorithm(GA)과 Decision Tree(DT)를 적용해서 구현했다.

  • PDF

Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System

  • To Xuan Dung;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.

A study in fault detection and diagnosis of induction motor by clustering and fuzzy fault tree (클러스터링과 fuzzy fault tree를 이용한 유도전동기 고장 검출과 진단에 관한 연구)

  • Lee, Seong-Hwan;Shin, Hyeon-Ik;Kang, Sin-Jun;Woo, Cheon-Hui;Woo, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1998
  • In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF