• Title/Summary/Keyword: Treatment technologies

Search Result 826, Processing Time 0.028 seconds

Priority Setting for Future Core Technologies using the AHP - With Major Fields in Rural Development and Resources - (AHP를 이용한 미래유망기술 투자의 우선순위 설정 - 농촌개발 및 자원분야를 중심으로 -)

  • Cho, Keun-Tae;Kim, Seong-Joon;Kim, Dae-Sik;Cho, Young-Woo;Lee, Jong-In
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.3 s.20
    • /
    • pp.41-46
    • /
    • 2003
  • The study was focused on setting priority for future core technologies in rural development and resources using AHP. The technologies were derived by Delphi method. Evaluation criteria for the priority setting were decided as 'technology', 'market oriented', and 'public concerns' by council. The future core technologies were divided as four groups by importance and R&D level. Technologies in upper two groups were considered in the study. Group I had high importance and high R&D level. Group II had high importance and lower R&D level. Questionnaires were given to 9 specialists in agricultural resources. As the results, 'public concerns' was decided as a most important evaluation criterion. The most important technologies are "technology developing for animal feces and urine treatment, and restoration it to farm land" in group I, and "technology developing for agricultural by-products as energy source" in group II.

Laser decontamination for radioactive contaminated metal surface: A review

  • Qian Wang;Feisen Wang;Chuang Cai;Hui Chen;Fei Ji;Chen Yong;Dasong Liao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.12-24
    • /
    • 2023
  • With the improvement of laser technology, the strategic needs of efficient and precise decontamination of various components in nuclear application units can be fulfilled by laser decontamination. The surface contaminants of nuclear facilities mainly exist both as loose contaminated layer and fixed oxide layer. The types of radionuclides and contamination layer thickness are closely related to the operation status of nuclear facilities, which have an important influence on the laser decontamination process. This study reviewed the mechanism of laser surface treatment and the influence of laser process parameters on the decontamination thickness, decontamination factor, decontamination efficiency and the distribution of aerosol particle. Although multiple studies have been performed on the mechanism of laser processing and laser decontamination process, there are few studies on the microscopic process mechanism of laser decontamination and the influence of laser decontamination on surface properties. In particular, the interaction between laser and radioactive contaminants needs more research in the future.

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

Case Study of Cost Effect Analysis for Toxic Compounds to Developing Effluent Limitation Standards : Focus on 1,4-Dichlorobenzene (수질유해물질 배출허용기준 설정에 따른 배출시설 비용영향 분석사례 연구: 1,4-Dichlorobenzene을 중심으로)

  • Kim, Kyeongjin;Kim, Wongi;Heo, Jin;Kim, Kwangin;Kim, Jaehoon;Kim, Sanghun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.557-565
    • /
    • 2010
  • Recently, regulations on toxic compounds in aquatic environment have been strengthened in korea due to the increasing public awareness of the water quality. Typically, these regulations include introduction of emerging toxic compounds and stricter effluent limitations for the already regulated compounds. However, too strict regulations may cause excessive burden on the industry. Therefore it is also important to assess the economic impacts when the new effluent limitation guidelines are introduced. The estimation of the additional cost for the wastewater dischargers to meet the new guidelines are based on the selected treatment technology to handle the hazardous substances and the regulatory levels for effluent limitations. To explore the procedures for cost estimation in enforcing new effluent limitations, a case study was performed specially for 1,4-dichlorobenzene. The pollutants of concern are surveyed for different industrial categories and various treatment technologies. For a given pollutant, the general performances of the treatment technologies are surveyed and a representative technology is selected. For a given technology, the capital cost and annual Operation and Maintenance (O&M) cost was calculated. The calculation of baseline costs to operate ordinary treatment technologies is also important. The ratio between the cost for introducing new treatment process and the baseline cost required for conventional technology was used to evaluate the economic impact on the industry. For 1,4-dichlorobenzene, steam stripping and activated carbon processes were selected as the specific treatment technologies. The cost effects to the regulation of the compound were found to be 6.4% and 14.5% increase in capital cost and O&M cost, respectively, at the flow rate over $2,000m^3/d$ for the categories of synthetic resin and other plastics manufacturing industry. For the case of petrochemical basic compounds manufacturing industry, the cost increases were 5.8% and 12.4%, respectively. It was suggested that cost effect analysis to evaluate the economic impacts of new effluent limitations on the industry is crucial to establish more balanced and reasonable effluent limitations to manage the industrial wastewater containing emerging toxic compounds in the wastewater.

Review on Risks of Perchlorate and Treatment Technologies (퍼클로레이트(Perchlorate)의 위해성과 저감기술 소개)

  • Shin, Kyung-Hee;Son, Ah-Jeong;Cha, Daniel K.;Kim, Kyoung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1060-1068
    • /
    • 2007
  • Perchlorate contamination in aquatic system is a growing concern due to the human health and ecological risks associated with perchlorate exposure. In spite of potential risks associated with perchlorate, drinking water standard has not been established worldwide. Recently, US EPA has issued new protective guidance for cleaning up perchlorate contamination with a preliminary clean-up goal of 24.5 ppb. In Korea, the drinking water standard and discharge standard for perchlorate has not been established yet and little information is available to address perchlorate problems. Perchlorate treatment technologies include ion exchange, microbial reactor, carbon adsorption, composting, in situ bioremediation, permeable reactive barrier, phytoremediation, and membrane technology. The process description, capability, and advantage/disadvantages of each technology were described in detail in this review. One of recent trends in perchlorate treatment is the combination of available treatment options such as combined microbial reduction and permeable reactive burier. In this review, we provided a brief perspective on perchlorate treatment technology and to identify an efficient and cost-effective approach to manage perchlorate problem.

Design of an Intrusion Detection and Self-treatment System for IoT (사물인터넷을 위한 침입탐지 및 자가 치료 시스템의 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.9-15
    • /
    • 2018
  • With the advent of the 5G communication era recently, advancement of the convergence technologies related to IoT has been progressed rapidly. IoT convergence technologies using various sensors are actively applied many fields in our lives, and it contributes to the popularization of these convergence technologies among many people successfully. The security problem of the IoT which connects many things on the network is critically vulnerable and is one of the most important challenge to be solved urgently. In this paper, we design an intrusion detection and self-treatment system for IoT, which can detect external attacks and anomalies in order to solve the security problems in IoT, perform self-treatment by operating the vaccine program according to the intrusion type whenever it detects certain intrusion. Furthermore, we consider the broadcasting of intrusion alarm message according to the frequency of similar circumstances in order to block intrusion contagious in IoT.

Current Status and Perspectives of Shale Gas Water Treatment Technology (셰일가스 수처리 기술 동향 및 전망)

  • Koo, Jae-Wuk;Lee, Sangho;Hong, Seungkwan;Kim, Joon Ha
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Shale gas has the potential to significantly change the way of the world's energy use. However, there are increasing concerns on environmental problems, particularly with respect to water use and wastewater treatment. This paper highlights issues related to shale gas water management and technologies currently used to address them. It also presents perspectives of emerging technologies for the treatment of shale gas wastewater, including forward osmosis (FO) and membrane distillation (MD).

R&D Trend on Surface Treatment of Magnesium Alloys (마그네슘합금의 표면처리에 관한 연구개발 동향)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.72-80
    • /
    • 2013
  • Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.

Combination of isoproterenol and length oscillations in relaxing porcine airway smooth muscles

  • Al-Jumaily, Ahmed M.;Mathur, Meha;Cairns, Simeon
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.225-235
    • /
    • 2015
  • Treatments for asthma are largely pharmaceutical, with some therapies also utilising alternative breathing techniques. The objective of both medical and alternative methods is to relax contracted airway smooth muscle (ASM). In normal subjects, tidal breathing- and deep inspiration-oscillations are believed to have a bronchodilatory effect. Similarly, application of length oscillations to isolated, contracted ASM also elicits muscle relaxation. As a means of investigating more-effective alternative treatment methods for contracted airways, we analyse the combined effects of bronchodilators and length oscillations on isolated, contracted ASM. The contractile state of the muscle tissue prior to treatment is of primary interest. Thereafter, the effect of applying a combination of small superimposed length oscillations with tidal breathing-like oscillations to ASM is studied alone and in combination with a common bronchodilator, isoproterenol (ISO). This work suggests that relaxation of isolated, contracted ASM following application of combined oscillations and ISO is larger than treatments of either combined oscillations or ISO alone. Further, the observed oscillation-associated relaxation is found to be amplitude- rather than frequency-dependent. This study gives additional insight into the role of oscillations and bronchodilators on contracted airways.

The State-of-the-Art on Technologies for Treatment of Polychlorinated Biphenyls(PCBs) Pollutants (잔류성 유기오염물질 Polychlorinated Biphenyls(PCBs) 분해 처리 기술 현황)

  • Lee, Sang-Hoon;Sea, Bongkuk
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.29-39
    • /
    • 2005
  • Polychlorinated biphenyls, (PCBs) are a group of highly toxic chlorinated industrial chemicals used as dielectrics, coolants and lubricants in electrical transformers. This article reviewed the state-of-the-art on technologies for decomposition of Polychlorinated biphenyls (PCBs), one of the persistent organic materials (POPs). The purpose of this study was to evaluate the feasibility of decontaminating PCBs contaminated pollutants using treatment technologies such as chemical dechlorination, photodegradation and biological transformation.

  • PDF