• Title/Summary/Keyword: Treatment couch

Search Result 69, Processing Time 0.03 seconds

Evaluation of the Positional Accuracy of the Delivered Beams from the Target: A Phantom Study (방사선 치료에서 치료 표적과 조사 빔의 일치 정도 평가: 팬텀 연구)

  • Kang, Sei-Kwon;Cho, Byung-Chul;Cheong, Kwang-Ho;Ju, Ra-Hyeong;Kim, Su-Ssan;Kim, Kyoung-Ju;Choi, Sang-Gyu;Bae, Hoon-Sik;Lee, Re-Na;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.192-200
    • /
    • 2006
  • We evaluated the positional accuracy of the delivered beams to the target in a phantom by simulating the whole process of the radiation treatments Including CT scanning, planning and beam exposures with MLCs. For this purpose, a phantom was made to calibrate the alignment between the CT and the attached laser system. A new, convenient method was also devised to align the setup lasers in the treatment room. Film was used for the Identification of the delivered beam and analyzed with a homemade computer program. The positional differences between the target and the beam centers varied with the couch rotations. The accelerator we used showed a maximum discrepancy of 2.0 mm at the table angle of $295^{\circ}$. The same measurements based on the new isocenter from the Winston-Lutz test resulted in the maximum of 1.35 mm for all rotation angles. The evaluation of the differences between the target and the beam centers is useful for the treatment planning.

  • PDF

Effectiveness of Bellyboard Device for Displacement of Small Bowel in Pelvic Irradiation (골반 방사선치료 시 소장의 위치변화를 위한 벨리보드의 유용성)

  • Lee, Rena;Lee, Kyung-Ja;Suh, Hyunsuk
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.202-208
    • /
    • 2007
  • Various techniques were evaluated to determine the best method for reducing small bowel involvement in pelvic irradiation. Fourteen patients receiving radiation in pelvic area were enrolled for this study. Five sets of small bowel images were obtained. Patients were positioned on a simulation couch with full bladder in prone and supine positions and 2 sets of images were taken. Then they were asked to empty their bladder and 2 sets of images were taken in prone and supine positions. A belly board device (BBD) was placed and one set of images was obtained. Using a software, the area of small bowel inside treatment field was contoured, measured, and analyzed. In both full and empty bladder cases, small bowel area reduction was observed in prone position as compared to supine position. Especially statistically significant reduction is noted in lateral film. An average decreases of 13% in PA and 26% in lateral direction were noted with bladder distention as compared to empty bladder. With the use of BBD for empty bladder, a significant reduction of $62.8{\pm}27.1%$ and $63.1{\pm}32.9%$ in PA and lateral directions were observed as compared to without BBD in prone position, respectively. In conclusion, the best sparing of small bowel concerning the area included in the treatment fields was achieved with BBD in prone position with empty bladder. However, further reduction is expected if the bladder was filled fully because the analysed data with empty vs full bladder study shows increased sparing of small bowel with distended bladder.

  • PDF

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Customer Acceptance Procedure for Clinac (21EX-Platinum)

  • Hong, Dong-Ki;Lee, Woo-Seok;Kwon, Kyung-Tae;Park, Kwang-Ho;Kim, Chung-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.43-61
    • /
    • 2004
  • Purpose : For qualify improvement in radiotherapy, it is important to set up and evaluate equipment (linac) accurately. In addition, technicians are needed to be fully aware of the equipment's detailed quality and its manual. Therefore, the result of ATP is evaluated and introduced, in order that the technicians are skilled by participating in quality assurance (QA) and understanding the quality of the equipment before clinical use. Method and Material : QA for LINAC 21EX (Varian, US) was done with suppliers its procedure was divided into radiation survey, mechanical test, radiation isocenter test, bean performance, dosimetry, and enhanced dynamic wedge and using X-omat film (Kodak), multidata, densitometer, and electrometer. QA of MLC (Millennium, 120 leaf) attached to LINAC and EPID (Portal vision) were done separately. Result : The leakage dose by survey meter was below the tolerance. In mechanical test, collimater, gantry, and couch rotation were less than 1mm, and the angles were ${\pm}0.1^{\circ}$ for digital and ${\pm}0.5^{\circ}$ for mechanical. The alignment test of the light field and crosshair were evaluated less than 1mm. The (a)symmetrical jaw field was less than ${\pm}0.5mm$. The radiation isocenter test using X-mat film was less than 1mm. The consistency of light field and radiation field was less than ${\pm}0.1mm$. PDD for photon energy was less than ${\pm}1\%$ and for electron energy of $90\%,\;80\%,\;50\%,\;and\;30\%$ were evaluated within the tolerance. Flatness for photon and electron energy was evaluated $2.3\%$ (tolerance $3\%$) and $3\%$ (tolerance $4.5\%$), respectively, and symmetry was $0.45\%$ (tolerance $2\%$) and $0.3\%$ (tolerance $2\%$), respectively. Dosimetry test for short term, MU setting, rep rate, and dose rate accuracy of photon and electron energy was within the tolerance depending on energy, MU, and gantry angle. Conclusion : Accuracy and safety for clinical use of Clinac 21EX was verified through customer acceptance procedure and the quality of the equipment was found out. These can reduce the difficulties in using the equipment. Furthermore, it is useful for clinically treatment of patients by technicians' active participations.

  • PDF

Comparison of Volumetric Modulated Arc Therapy and Non-coplanar Fixed-field Intensity Modulated Radiation Therapy for Irregular Target adjacent to Organ At Risk (손상위험장기에 인접한 불규칙한 모양의 타겟 치료 시, 용적변조회전 방사선치료와 비동일평면상의 빔을 이용한 세기변조 방사선치료의 유용성 평가 및 비교)

  • Kim, Kyung Ah;Na, Kyung Soo;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Purpose: The purpose of this study was to compare volumetric modulated arc therapy(VMAT) with fixed-field intensity modulated radiation therapy(IMRT) using non-coplanar beam when the shape of target is irregular and the location is adjacent to organ at risk(OAR). Materials and Methods: The subjects of this study were a total of 6 patients who had radiation therapy for whole scalp(2 patients), partial scalp(2 patients), and whole ventricle(2 patients) by True Beam STX(Varian Medical Systems, USA). VMAT plans consisted of coplanar or non-coplanar arcs which can minimize the volume of OAR included in beamlets. All fixed-field IMRT plans consisted of non-coplanar beams using more than 2 angles of Couch. Results: The VMAT and IMRT plans were compared with regard to the maximum dose of both lens, both optic nerves, optic chiasm, and brain stem and the mean dose of both eyeballs and hippocampus. VMAT plans showed higher dose than ncIMRT plans at more than 6 of all OARs in every patient, and the ratio was from 1.1 times to 8.2 times. In case of total scalp and partial scalp, the volume of brain which received more than 20 Gy in the VMAT plans was 2 times larger than the volume in the ncIMRT plans. In case of whole ventricle, there was no significant difference. Target coverage was satisfied in both plans($PTV_{100%}=95%$). The maximum dose in target volume and required monitor unit(MU) of ncIMRT were higher than them of VMAT plans. Conclusion: Even though ncIMRT is less efficient than VMAT with regard to required MU and treatment time, the dose to OARs is much lower than VMAT and PTV Coverage is similar with VMAT. If the shape of target is irregular and location is adjacent to OAR, comparison VMAT plan with ncIMRT plan deserves to be considered.

  • PDF

Evaluation of Combine IGRT using ExacTrac and CBCT In SBRT (정위적체부방사선치료시 ExacTrac과 CBCT를 이용한 Combine IGRT의 유용성 평가)

  • Ahn, Min Woo;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Lee, Doo Sang;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.201-208
    • /
    • 2018
  • Purpose : The purpose of this study is to compare and analyze the set-up errors using the Combine IGRT with ExacTrac and CBCT phased in the treatment of Stereotatic Body Radiotherapy. Methods and materials : Patient who were treated Stereotatic Body Radiotherapy in the ulsan university hospital from May 2014 to november 2017 were classified as treatment area three brain, nine spine, three pelvis. First using ExacTrac Set-up error calibrated direction of Lateral(Lat), Longitudinal(Lng), Vertical(Vrt), Roll, Pitch, Yaw, after applied ExacTrac moving data in addition to use CBCT and set-up error calibrated direction of Lat, Lng, Vrt, Rotation(Rtn). Results : When using ExacTrac, the error in the brain region is Lat $0.18{\pm}0.25cm$, Lng $0.23{\pm}0.04cm$, Vrt $0.30{\pm}0.36cm$, Roll $0.36{\pm}0.21^{\circ}$, Pitch $1.72{\pm}0.62^{\circ}$, Yaw $1.80{\pm}1.21^{\circ}$, spine Lat $0.21{\pm}0.24cm$, Lng $0.27{\pm}0.36cm$, Vrt $0.26{\pm}0.42cm$, Roll $1.01{\pm}1.17^{\circ}$, Pitch $0.66{\pm}0.45^{\circ}$, Yaw $0.71{\pm}0.58^{\circ}$, pelvis Lat $0.20{\pm}0.16cm$, Lng $0.24{\pm}0.29cm$, Vrt $0.28{\pm}0.29cm$, Roll $0.83{\pm}0.21^{\circ}$, Pitch $0.57{\pm}0.45^{\circ}$, Yaw $0.52{\pm}0.27^{\circ}$ When CBCT is performed after the couch movement, the error in brain region is Lat $0.06{\pm}0.05cm$, Lng $0.07{\pm}0.06cm$, Vrt $0.00{\pm}0.00cm$, Rtn $0.0{\pm}0.0^{\circ}$, spine Lat $0.06{\pm}0.04cm$, Lng $0.16{\pm}0.30cm$, Vrt $0.08{\pm}0.08cm$, Rtn $0.00{\pm}0.00^{\circ}$, pelvis Lat $0.06{\pm}0.07cm$, Lng $0.04{\pm}0.05cm$, Vrt $0.06{\pm}0.04cm$, Rtn $0.0{\pm}0.0^{\circ}$. Conclusion : Combine IGRT with ExacTrac in addition to CBCT during Stereotatic Body Radiotherapy showed that it was possible to reduce the set-up error of patients compared to single ExacTrac. However, the application of Combine IGRT increases patient set-up verification time and absorption dose in the body for image acquisition. Therefore, depending on the patient's situation that using Combine IGRT to reduce the patient's set-up error can increase the radiation treatment effectiveness.

  • PDF

Stereotactic Target Point Verification in Actual Treatment Position of Radiosurgery (방사선수술시 두개내 표적의 정위적좌표의 치료위치에서의 확인)

  • Yun, Hyong-Geun;Lee, Hyun-Koo
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.403-409
    • /
    • 1995
  • Purpose : Authors tried to enhance the safety and accuracy of radiosurgery by verifying stereotacitc target point in actual treatment position prior to irradiation. Materials and Methods : Before the actual treatment, several sections of anthropomorphic head phantom were used to create a condition of unknown coordinates of the target point. A film was sandwitched between the phantom sections and punctured by sharp needle tip. The tip of the needle represented the target point. The head phantom was fixed to the stereotactic ring and CT scan was done with CT localizer attached to the ring. After the CT scanning, the stereotactic coordinates of the target point were determined. The head phantom was secured to accelerator's treatment couch and the movement of laser isocenter to the stereotactic coordinates determined by CT scanning was performed using target positioner. Accelerator's anteroposterior and lateral portal films were taken using angiographic localizers. The stereotactic coordinates determined by analysis of portal films were compared with the stereotactic coordinates previously determined by CT scanning. Following the correction of discrepancy the head phantom was irradiated using a stereotactic technique of several arcs. After the irradiation, the film which was sandwitched between the phantom sections was developed and the degree of coincidence between the center of the radiation distribution with the target point represented by the hole in the film was measured. In the treatment of the actual patients, the way of determining the stereotactic coordinates with CT localizers and angiograuhic localizers was the same as the phantom study. After the correction of the discrepancy between two sets of coordinates, we proceeded to the irradiation of the actual patient. Results : In the phantom study, the agreement between the center of the radiation distribution and the localized target point was very good. By measuring optical density profiles of the sandwitched film along axes that intersected the target point, authors could confirm the discrepancy was 0.3 mm. In the treatment of an actual patient, the discrepancy between the stereotactic coordinates with CT localizers and angiographic localizers was 0.6 mm. Conclusion : By verifying stereotactic target point in actual treatment position prior to irradiation, the accuracy and safety of streotactic radiosurgery procedure were established.

  • PDF

On-line Image Guided Radiation Therapy using Cone-Beam CT (CBCT) (콘빔CT (CBCT)를 이용한 온라인 영상유도방사선치료 (On-line Image Guided Radiation Therapy))

  • Bak, Jin-O;Jeong, Kyoung-Keun;Keum, Ki-Chang;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.294-299
    • /
    • 2006
  • $\underline{Purpose}$: Using cone beam CT, we can compare the position of the patients at the simulation and the treatment. In on-line image guided radiation therapy, one can utilize this compared data and correct the patient position before treatments. Using cone beam CT, we investigated the errors induced by setting up the patients when use only the markings on the patients' skin. $\underline{Materials\;and\;Methods}$: We obtained the data of three patients that received radiation therapy at the Department of Radiation Oncology in Chung-Ang University during August 2006 and October 2006. Just as normal radiation therapy, patients were aligned on the treatment couch after the simulation and treatment planning. Patients were aligned with lasers according to the marking on the skin that were marked at the simulation time and then cone beam CTs were obtained. Cone beam CTs were fused and compared with simulation CTs and the displacement vectors were calculated. Treatment couches were adjusted according to the displacement vector before treatments. After the treatment, positions were verified with kV X-ray (OBI system). $\underline{Results}$: In the case of head and neck patients, the average sizes of the setup error vectors, given by the cone beam CT, were 0.19 cm for the patient A and 0.18 cm for the patient B. The standard deviations were 0.15 cm and 0.21 cm, each. On the other hand, in the case of the pelvis patient, the average and the standard deviation were 0.37 cm and 0.1 cm. $\underline{Conclusion}$: Through the on-line IGRT using cone beam CT, we could correct the setup errors that could occur in the conventional radiotherapy. The importance of the on-line IGRT should be emphasized in the case of 3D conformal therapy and intensity-modulated radiotherapy, which have complex target shapes and steep dose gradients.

Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study (단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구)

  • Kim, Jin Sung;Ju, Sang Gyu;Hong, Chae Seon;Jeong, Jaewon;Son, Kihong;Shin, Jung Suk;Shin, Eunheak;Ahn, Sung Hwan;Han, Youngyih;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.

Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging (전자포탈영상을 이용한 기하학적 정도관리 실시간 분석 프로그램의 개발)

  • Lee, Sang-Rok;Jung, Kyung-Yong;Jang, Min-Sun;Lee, Byung-Gu;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.

  • PDF