• Title/Summary/Keyword: Treadmill exercise

Search Result 470, Processing Time 0.022 seconds

The Effect of 4 Weeks of Treadmill Exercise and Protein Diet on Immunoglobulin and Antioxidant Enzyme in Rats (4주간의 트레드밀 운동과 단백질 식이가 흰쥐의 면역글로불린 및 항산화효소에 미치는 영향)

  • Lee, Chan-Soo;Lee, Sang-Ho;Sung, Gi-Dong;Baek, Yeong-Ho
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1483-1489
    • /
    • 2010
  • The purpose of this study was to investigate the effects of treadmill exercise and a protein diet on immunoglobulin and antioxidant enzymes in rats. Forty-four male Sprague-Dawley rats, 5 weeks old, were used. Experimental groups were divided into exercise with protein diet group (A, n=11), exercise group (B, n=11), protein diet group (C, n=11), and the control group (D, n=11). Exercise was administered through a treadmill running program (14~18 m/min, $0^{\circ}$ grade, 20 min/day, 5 day/wk) and these rats were given a 40% protein diet for 4 wk. The results of this study are as follows: the protein diet group showed a significant increase in IgG of immunoglobulin compared to the exercise group and control group; the exercise with protein diet group and protein diet group showed a significant increase in SOD activity of antioxidant enzymes compared to the control group; the exercise with protein diet group, exercise group and protein diet group showed a significant increase in GPx activity of antioxidant enzymes compared to the control group; the exercise with protein diet group showed a significant increase in CAT activity of antioxidant enzymes compared to the protein diet group and control group. In conclusion, treadmill exercise and a protein diet were found to help with immunoglobulin and antioxidant enzymes. Further research regarding the effects of exercise and protein diets is required.

A Study on Nutritional Management for Improvement of Exercise Capacity and Physical Fitness -For Dietary Feeding Condition- (운동 수행 능력 및 체력증진을 위한 효율적 영양관리에 관한 연구 -식이급식 조건에 대하여-)

  • 오승호;김유섭;강정채
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.94-102
    • /
    • 1991
  • This study was directed to further clarify the effect of resting time or dietary condition for the improvement of exercise capacity and physical fitness, and the changes of some body consitiuents and physiological functions which are related to the exercise metabolism. Sixteen male students(8 athletes and 8 nonathletes)were participated during 3 weeks(Aug. 20-Sep.9, 1989). Each subject performed two treadmill running trials at an absolute intensity (1 mintute in 3.4mph/15% slope and 2 minutes in 5.5mph/20% slope). In the resting time trials, general diet was fed before 1, 2, 4 and 12 hours of the treadmill exercise loaded. in the dietary condition trials, high carbohydrate(HC), high fat(HF) and high protein(HP) diet were fed before 2 hours of the treadmill exercise loaded. Control trial was that of resting time before treadmill exercise loaded after 12 hours of general diet feeding. Measurement were made to study the change of blood glucose, palmitate, lactate, blood pressure and heart rate. The results obtained are summarized as follows: Mean daily metabolizable period. In resting time trial, the blood glucose concentration of athlete and nonathlete from 2 hours group was similar to control group. The blood palmitate concentration of athlete was increased in 1 and 2 hours group but those of nonathlete was not only increased in 1 and2 hours group but was more increased in 12 hours group, compared with both control group. The blood lactate concentration was increased in all experimental group, compared with both control group and those of nonathlete was much higher than athlets. The elevation rate of blood pressure in pre-and after-exercise of athlete was lower than those of nonathlete. In dietary composition trial, the blood glucose concentration of athlete and nonathlete in HC group was higher than other diet groups. The blood lactate concentration of athlete and nonathlete in HC group was lower than other diet groups. There was no remarkable change of the blood palmitate concentration and heart rate in each dietary composition trial, but those of nonathlete was low in HC and high in HP group. In above results, it was suggested that the effective condition of resting time and dietary composition for the improvement of exercise capacity of nonathlete may be 2 hours and HC diet, respectively. But it was showed that the exercise capacity of athlete may not be affected by experimental condition of resting time, except 1 hour after feeding or of dietary composition because of well adaptation in new exercise condition.

  • PDF

Effects of Different Type of Exercise on Blood Variables and Leptin Hormones in SD Rats (훈련방법의 차이가 흰쥐의 혈액성분과 랩틴농도에 미치는 영향)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.960-963
    • /
    • 2006
  • The purpose of this study is to evaluate the different type of exercise training on the changes of blood variables and leptin in SD rats. For this study, SD rats were divided into three groups: control group (CG: n=10), swim trained group (SG: n=10), and treadmill trained group (TG: n=10). The animals were housed in a pathogen-free animal facility ($22-24^{\circ}C$, 50-60% relative humidity, 08:00-20:00 lighting hours) at D university animal center, Pusan, Korea). Food and water were available ad libitum. The trained rats underwent a 8-wk endurance swim training (5 times/wk) in water at $26-29^{\circ}C$ (SG) and treadmill training (5 times/wk) in DAEJONG treadmill for 60 min. All data were expressed as mean and standard deviation by using SPSS package program (ver 10.0). The result through the statistical analysis of this data were summarized as follows: 1. In the weight changes, there were significant differences among CG, SG and TG(p<.05) after regular swim and treadmill training. TG showed the lowest weight than the other groups. 2. In the epididymal & perirenal adipose tissue levels, there were significant differences among CG, SG and TG(p<.05) after regular swim and treadmill training. TG showed the lowest adipose tissue levels than the other groups. 3. In the triglyceride changes, For the SG and TG, there were significantly decreased after regular swim and treadmill training. TG showed the lowest triglyceride levels than the other groups. 4. In the insulin hormone, For the SG and TG, there were significantly decreased after regular swim and treadmill training. TG showed the lowest insulin levels than the other groups. 5. In the leptin changes, For the SG and TG, there were significantly decreased after regular swim and treadmill training. TG was the lowest than the other groups. Based on the results, Regular swim and treadmill training decrease body weight, epididymal & perirenal adipose tissue levels significantly, this is caused but by decreased triglycerides, insulin, and leptin hormone levels not by the other factors. Regular treadmill training decreased insulin hormone levels compare to swim training, however there was no direct insulin effect on the weight changes. and it might be the direct effect of leptin hormones.

The Effects of Hovenia dulcis Fruit Hot Water Extracts on Anti-fatigue and Improvement of the Exercise Performance in SD Rats (랫드를 이용한 헛개나무과병 열수추출물 투여가 운동에 의한 피로회복과 운동수행능력에 미치는 기전 규명)

  • Na, Chun-Soo;Kim, Hee Kyung;Kim, Jin Beom;Roh, Hyun Jeong;Um, Na-Na;Noh, Hae-Ji;Na, Dae-Seung;Dong, Mi-Sook;Hong, Cheol Yi
    • YAKHAK HOEJI
    • /
    • v.57 no.5
    • /
    • pp.348-356
    • /
    • 2013
  • The present study investigated the effects of Hovenia Dulcis (HD) fruit extract powder on the improvement of physical activity, especially exercise capacity. Forty mice were divided into 4 groups including normal controls, negative controls, 100 (HD-100) and 200 (HD-200) mg/kg HD fruit extract powder groups for 5-times exercises using treadmill. Normal control did not performed treadmill running but others did 5-times for 10 days. HD fruit extract powders were administrated orally one-times per day for 10 days before treadmill exercise and normal and negative controls were fed with excipient water. After 5-times exercise, blood biochemical analysis showed that aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities and blood lactate concentration were statistically increased in negative controls than in normal controls. They were decreased in HD fruit extract powder groups, compared with negative controls. These results were considered as the effects of HD fruit extract powders on reduced tissue damages during exercise. Other measured indices did not reveal remarkable differences. All together, these results suggest that HD fruit extract powders may enhance the exercise performance by recovering the exercise-fatigue via blood lactate concentration by reducing blood LDH activity and via reduction of blood CK and AST activity.

The Effects of Exercise Training on Cardiac eNOS, ET-1 mRNA and Skeletal Muscle eNOS Protein Level in SHR (지구성 운동이 본태성 고혈압 쥐 심장근의 eNOS, ET-1 mRNA와 골격근 eNOS 단백질 발현에 미치는 영향)

  • Song, Eun-Young;Cho, In-Ho;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1717-1722
    • /
    • 2007
  • In the present study, all of the treadmill exercise-trained SHR expressed clear adaptive changes such as reduced resting heart rate and blood pressures, LPOA, homocysteine Therefore, treadmill exercise was sufficient to induce physiological adaptation in the SHR. Endurance training is known to induce physiological cardiac hypertrophy, while hypertension induces patho logical cardiac hypertrophy that increases cardiomyocyte apoptosis. The pathological adaptation to pressure overload has also been associated with a further increase in the expression of several marker genes including cardiomyocyte ET-1 in the SHR, but not in the exercise-trained SHR. Additionally, there is an increase in the endothelial nitricoxide synthases (eNOS) protein expression of soleus, gastrocnemius, and extensor digitorum longus muscle in the exercise-trained SHR but not in the SHR in the present study. Thus, compared to pathological adaptation to pressure overload, physiological adaptation to exercise training is associated with distinct alterations in cardiac and molecular phenotypes. based on these results, exercise training improves hypertension by cardiovascular regulating genes and hemodynamic parameters.

Gynostemma pentaphyllum extract and its active component gypenoside L improve the exercise performance of treadmill-trained mice

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Hong, Su Hee;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.298-313
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: The effectiveness of natural compounds in improving athletic ability has attracted attention in both sports and research. Gynostemma pentaphyllum (Thunb.) leaves are used to make traditional herbal medicines in Asia. The active components of G. pentaphyllum, dammarane saponins, or gypenosides, possess a range of biological activities. On the other hand, the anti-fatigue effects from G. pentaphyllum extract (GPE) and its effective compound, gypenoside L (GL), remain to be determined. MATERIALS/METHODS: This study examined the effects of GPE on fatigue and exercise performance in ICR mice. GPE was administered orally to mice for 6 weeks, with or without treadmill training. The biochemical analysis in serum, glycogen content, mRNA, and protein expressions of the liver and muscle were analyzed. RESULTS: The ExGPE (exercise with 300 mg/kg body weight/day of GPE) mice decreased the fat mass percentage significantly compared to the ExC mice, while the ExGPE showed the greatest lean mass percentage compared to the ExC group. The administration of GPE improved the exercise endurance and capacity in treadmill-trained mice, increased glucose and triglycerides, and decreased the serum creatine kinase and lactate levels after intensive exercise. The muscle glycogen levels were higher in the ExGPE group than the ExC group. GPE increased the level of mitochondrial biogenesis by enhancing the phosphorylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein and the mRNA expression of nuclear respiratory factor 1, mitochondrial DNA, peroxisome proliferator-activated receptor-δ, superoxide dismutase 2, and by decreasing the lactate dehydrogenase B level in the soleus muscle (SOL). GPE also improved PGC-1α activation in the SOL significantly through AMPK/p38 phosphorylation. CONCLUSIONS: These results showed that GPE supplementation enhances exercise performance and has anti-fatigue activity. In addition, the underlying molecular mechanism was elucidated. Therefore, GPE is a promising candidate for developing functional foods and enhancing the exercise capacity and anti-fatigue activity.

Comparison of Underwater and Overground Treadmill Walking Exercise to Improve Gait and Physical Function in People After Stroke

  • Park, Si-Eun;Lee, Mi-Joung;Yoon, Bum-Chul;Lee, Byung-Hee;Shin, Hee-Joon;Choi, Wan-Suk;Park, Sung-Kyu;Jeon, Hye-Mi;Moon, Ok-Kon;Lee, Suk-Hee;Min, Kyoung-Ok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • The purpose of this study was to compare the effects of treadmill walking in underwater and overground which affects gait and physical function of people who have had a stroke. Twenty people after a stroke who have become hemiplegic over 6 months were participated. Participants were divided into two groups: underwater treadmill group(UTG) and overground treadmill group(OTG). The intervention was done 4 times per weeks for 6 weeks and 1 session lasted for 30 minutes. Gait and physical function elements were measured at baseline, at the middle(3 weeks) and at the end of the intervention(6 weeks). For the elements of gait, walking velocity, affected stance phase, affected weight bearing were assessed. For the elements of physical function, Short Form 8(SF-8) health survey was used. The result of this study showed that both groups improved similarly in walking velocity. However participants in UTG improved more than those in OTG in affected stance phase(p<.05), affected weight bearing(p<.05) and emotional aspect(p<.001). Based on the results of this study, it can be suggested that treadmill walking both in underwater and on the ground can be effective in improving hemiplegic gait and physical function of people who have had a stroke. The result also suggest that the underwater treadmill exercise can be more effective than overground treadmill in restoration of gait in people after stroke.

  • PDF

Effects of Treadmill Walking Training with Randomized Walking Speed on Pulmonary Function in Persons with Chronic Stroke (무작위 속도 변화에 의한 트레드밀 보행훈련이 뇌졸중 환자의 폐기능에 미치는 영향)

  • Park, Sung-Hun;Cha, Yong-Jun;Choi, Yoon-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2016
  • PURPOSE: The purpose of this study was to investigate which treadmill walking training mode is more effective strategy for improving pulmonary function of persons with chronic stroke. METHODS: Twenty-one chronic stroke patients were allocated and randomly to an experimental group (treadmill training with randomized speed control, n=11) and a control group (treadmill training without speed change, n=10). All participants received 30 minutes of neurodevelopmental treatment. In addition, the two groups performed treadmill training for 20 minutes each time with or without speed change. Speed change was applied 40%, 50%, 60%, 70% of Heart Rate Reserve. All the exercise programs lasted six weeks, with five times per week. Pulmonary function was assessed before and after exercise program by using forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and maximal voluntary ventilation (MVV). RESULTS: In the both groups, FEV1 was significantly increased after training (p<.05). Compared to the control group, the experimental group showed 11.9% larger amount of change (p<.05). In the experimental group, FVC and MVV were significantly increased after training (9.9%, 7.6%, respectively) (p<.05). But in the control group, there was no significant difference in the FVC and MVV after training. CONCLUSION: Treadmill training with randomized speed control will be a better positive rehabilitation program than treadmill training without speed change to improve pulmonary function in persons with chronic stroke.

Effects of Treadmill Exercise on Cerebellar Astrocyte Activation and Purkinje Cell, and Motor Function in Aged Rats (트레드밀 운동이 노화 흰쥐 소뇌의 성상세포 활성과 퍼킨제 세포 및 운동기능 변화에 미치는 영향)

  • Lee, Hyo-Cheol;Kim, Hyung-Jun
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.4
    • /
    • pp.481-492
    • /
    • 2019
  • The purpose of this study was to investigate the effects of treadmill exercise on cerebellar astrocyte activation and purkinje cells, neurotrophic factors expression, and motor function in aged rats. Sprague-Dawley (SD) rats were used and divided into three groups; (1) Young Control Group (YCG; 3months aged, n=10); (2) Old Control Group; (OCG; 24months aged, n=10); (3) Old Exercise Group (OEG; 24months aged, n=10). Rats were then subjected to treadmill exercise for 5 days per week for 12 weeks during which time the speed of the treadmill was gradually increased. The results revealed that in the rota-rod test, motor function was significantly increased in the OEG compared to the OCG (p<.05), and similarly YCG. Number of calbindin-positive purkinje cell expression significantly increased in the cerebellar vermis of OEG compared to the OCG (p<.05), and similarly YCG. GFAP-, NMDAR-positive cell expression significantly increased in the OEG (respectively p<.001), GFAP and GLAST protein levels were significantly increased in the cerebellum of OEG compared to the OCG (p<.05, p<.001) and similarly YCG. BDNF and NGF protein levels were highest in the YCG, increased in the OEG compared to OCG (p<.001, p<.05). These result show that regular exercise not only improved astrocyte activation, but also increased purkinje cell expression in the cerebellum and motor function by increasing the neurotrophic factors in aged rats.

Effects of aerobic exercise on antioxidants in rat models with cardiomyopathy

  • Kim, Eun-Jung;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Objective: In this study, we aimed to test the hypothesis that aerobic exercise might exert its cardio-protective effect by preventing oxidative stress and improving cardiac function in rat models with doxorubicin-induced cardiomyopathy. Design: Randomized controlled trial. Methods: We randomly divided experimental rats into four groups: the normal group was used as a non-cardiomyopathy normal control (n=10); the control group included non-aerobic exercise after doxorubicin-induced cardiomyopathy (n=10); the experimental group I included aerobic exercise (3 m/min) after doxorubicin-induced cardiomyopathy (n=10); and experimental group II included aerobic exercise (8 m/min) after doxorubicin-induced cardiomyopathy. Rats in the treadmill training groups underwent treadmill training, which began at 2 weeks after the first intraperitoneal injection. At the end of the exercise period, we determined the heart weight change for each rat. Changes in the levels of oxidative stress enzymes (superoxide dismutase [SOD], thiobarbituric acid-reactive substances [TBARS], and catalase) in the cardiac tissue of rats from all four groups were examined at the end of the experiment. Results: Significant cardiac myocyte injury and increase in myocardial TBARS concomitant with a reduction in myocardial SOD and catalase were observed following cardiomyopathy (p<0.05). Significant cardiac tissue and increase in myocardial TBARS along with reduction in myocardial SOD and catalase were observed following cardiomyopathy (p<0.05). Oxidative parameters were significantly improved in the aerobic exercise groups compared with the control group. Conclusions: These findings indicate that aerobic exercise effectively prevents oxidative stress in rat models with cardiomyopathy.