DOI QR코드

DOI QR Code

Effects of Treadmill Exercise on Cerebellar Astrocyte Activation and Purkinje Cell, and Motor Function in Aged Rats

트레드밀 운동이 노화 흰쥐 소뇌의 성상세포 활성과 퍼킨제 세포 및 운동기능 변화에 미치는 영향

  • Received : 2019.05.31
  • Accepted : 2019.07.31
  • Published : 2019.07.31

Abstract

The purpose of this study was to investigate the effects of treadmill exercise on cerebellar astrocyte activation and purkinje cells, neurotrophic factors expression, and motor function in aged rats. Sprague-Dawley (SD) rats were used and divided into three groups; (1) Young Control Group (YCG; 3months aged, n=10); (2) Old Control Group; (OCG; 24months aged, n=10); (3) Old Exercise Group (OEG; 24months aged, n=10). Rats were then subjected to treadmill exercise for 5 days per week for 12 weeks during which time the speed of the treadmill was gradually increased. The results revealed that in the rota-rod test, motor function was significantly increased in the OEG compared to the OCG (p<.05), and similarly YCG. Number of calbindin-positive purkinje cell expression significantly increased in the cerebellar vermis of OEG compared to the OCG (p<.05), and similarly YCG. GFAP-, NMDAR-positive cell expression significantly increased in the OEG (respectively p<.001), GFAP and GLAST protein levels were significantly increased in the cerebellum of OEG compared to the OCG (p<.05, p<.001) and similarly YCG. BDNF and NGF protein levels were highest in the YCG, increased in the OEG compared to OCG (p<.001, p<.05). These result show that regular exercise not only improved astrocyte activation, but also increased purkinje cell expression in the cerebellum and motor function by increasing the neurotrophic factors in aged rats.

본 연구는 12주간의 트레드밀 운동이 노화 흰쥐 소뇌의 성상세포 활성과 퍼킨제 세포 발현 및 운동기능 변화에 미치는 영향에 대해 알아보았다. Sprague-Dawley(SD) 흰쥐를 실험처치에 따라 (1)젊은 통제집단 (Young Control Group; YCG; 3months aged; n=10), (2) 노화 통제집단 (Old Control Group; OCG; 24months aged; n=10), (3) 노화 운동집단 (Old Exercise Group; OEG; 24months aged; n=10)으로 구분한 후 OEG는 트레드밀 운동을 시간과 강도를 점증적으로 증가하여 12주간, 주 5회 실시하였다. 실험결과 rota-rod 검사에서 운동기능이 OCG에 비해 OEG에서 증가하는 것으로 나타났으며(p<.05) 그 수준은 YCG와 유사한 것으로 나타났다. calbindin-양성 퍼킨제 세포의 발현도 OCG에 비해 OEG의 소뇌 충부에서 증가하였으며(p<.05), 그 수준은 YCG와 유사하였다. GFAP-, NMDAR-양성세포의 발현도 OEG에서 증가하였다(각각 p<.001). GFAP, GLAST 단백질 수준은 OCG에 비해 OEG에서 증가하였으며(p<.05, p<.001) 그 수준은 YCG와 유사하였다. BDNF, NGF 수준은 YCG에서 가장 높았으며 OCG에 비해 OEG에서 증가하는 것으로 나타났다(p<.001, p<.05). 이상의 결과를 종합하면 규칙적인 운동은 성상세포의 활성을 향상시킬 뿐만 아니라 신경영양인자의 증가를 통하여 소뇌의 퍼킨제 세포 발현과 운동기능을 개선시키는 것으로 판단된다.

Keywords

References

  1. Barres, B. (2008). The Mystery and Magic of Glia: A Perspective on Their Roles in Health and Disease. Neuron, 60 (3), 430-440. https://doi.org/10.1016/j.neuron.2008.10.013
  2. Bergami, M. Santi, S., Formaggio. E., Cagnoli, C., Verderio, C., Blum, R., Berninger, B., Matteoli, M., & Canossa, M. (2008). Uptake and recycling of pro-BDNF for transmitterinduced secretion by cortical astrocytes. Journal of Cell Biology, 183 (2), 213-221. https://doi.org/10.1083/jcb.200806137
  3. Cho, H, S., Kim, T, W., Ji, E. S., Park, H, S., Shin, M. S., & Baek, S. S. (2016). Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats. Journal of exercise rehabilitation. 12 (4), 293-298. https://doi.org/10.12965/jer.1632696.348
  4. Chung, S. T., Jun, T. E., & Im, J. H. (1998). Effects of Jump Motor Learning on the Morphology of Purkinje Cells in Rat. Exercise Science. 7 (1), 71-80.
  5. Condorelli, D. F., Salin, T., Dell'Albani, P., Mudo, G., Corsaro, M., Timmusk, T., Metsis, M., & Belluardo, N. (1995). Neurotrophins and their trk receptors in cultured cells of the glial lineage and in white matter of the central nervous system. Journal of Molecular Neuroscience, 6 (4), 237-248. https://doi.org/10.1007/bf02736783
  6. Cotrina, M. L., & Nedergaard, M. (2002). Astrocytes in the aging brain. Journal of Neuroscience Research, 67 (1), 1-10. https://doi.org/10.1002/jnr.10121
  7. Dani, J. W., Chernjavsky, A., & Smith, S. J. (1992). Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 8 (3), 429-440. https://doi.org/10.1016/0896-6273(92)90271-e
  8. de Senna, P. N., Ilha, J., Baptista, P. P., do Nascimento, P. S., Leite, M. C., Paim, M. F., Goncalves, C. A., Achaval, M., & Xavier, L. L. (2011). Effects of physical exercise on spatial memory and astroglial alterations in the hippocampus of diabetic rats. Metabolic Brain Disease, 26 (4), 269-279. https://doi.org/10.1007/s11011-011-9262-x
  9. Diniz D. G., Foro, C. A., Rego, C. M., Gloria, D. A., de Oliveira, F. R., Pase, J. M., de Sousa, A. A., Tokuhashi, T. P., Trindade, L. S., Turiel, M. C., Vasconcelos, P. F., & Diniz, C. W. (2010). Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. The European Journal of Neuroscience, 32 (3), 509-519. https://doi.org/10.1111/j.1460-9568.2010.07296.x
  10. Dringen, R. (2000). Metabolism and functions of glutathione in brain. Progress in Neurobiology, 62 (6), 649-671. https://doi.org/10.1016/S0301-0082(99)00060-X
  11. Furukawa, H., Singh, S. K., Mancusso, R., Gouaux, E. Subunit arrangement and function in NMDA receptors. (2005). Nature. 438(7065), 185-192. https://doi.org/10.1038/nature04089
  12. Gallgher, B., Corbett, E., Freeman, L., Riddoch-Kennedy, A.,Miller, S., Snith, C., Radensky, L., & Zarrow,A. (2001). A fall prevention program for the home environment. Home-care provider, 6 (5), 157-163. https://doi.org/10.1067/mhc.2001.119263
  13. Gilbert, P. F. C. (1974). A theory of memory that explains the function and structure of the cerebellum. Brain Research, 70 (1), 1-18. https://doi.org/10.1016/0006-8993(74)90208-X
  14. Grosche, A., Grosche, J., Tackenberg, M., Scheller, D., Gerstner, G., Gumprechat, A., Pannicke, T., Hirrlinger, P. G., Wilhelmsson, U., Hultmann, K., Hartig, W., Steinhauser, C., Pekny, M., & Reichenbach, A. (2013). Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus. PLoS One, 8 (7), 8:e69143. doi: 10.1371/journal.pone.0069143
  15. Hardingham, G. E. & Bading, H. (2003). The Yin and Yang of NMDA receptor signalling. Trends in Neuroscience, 26 (2), 81-89. https://doi.org/10.1016/S0166-2236(02)00040-1
  16. Hassanpoor, H., Raza, M., & Fallah, A. (2013). Effect of BDNF Secretion by Astrocyte on Learning and Memory:A Modeling Approach. ICABME, 2013 2nd International Conference, 11-13.
  17. Hayman, M. & Schipper (1996). Astrocyte, brain aging, and neurodegeneration. Neurobiology of Aging, 17 (3), 467-480. https://doi.org/10.1016/0197-4580(96)00014-0
  18. Holtzer, R., Epstein, N., Mahoney, J. R., Izzetoglu, M., & Blumen, H. M. (2014). Neuroimaging of mobility in aging: a targeted review. The Journals of Gerontology. Series A, Biological Science and Medical Science, 69 (11), 1375-1388. doi: 10.1093/gerona/glu052
  19. Hormer, P. J., & Palmer, T. D. (2003). New roles for astrocytes: The nightlife of an astrocyte. Trends in Neurosciences, 26 (11), 597-603. https://doi.org/10.1016/j.tins.2003.09.010
  20. Im, J. H., & Jung, S. T. (1996). Effects of jump motor learning on the synaptic efficacy of hippocampal pyramidal cells in rat. Exercise Science, 5 (2), 103-114.
  21. Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (1991). Principle of neural science(3rd ed.). New Jersey: Appleton & Lange.
  22. Kim, G, W., Park, J. A., & Jun, H, O. (2004). New role of Astrocyte. Biowave. 6 (12), 1-10.
  23. Kim, J. O., & Yoon, J. H. (2014). Effects of Resistance Exercise on Synaptic Plasticity Factor, Ultrastructural and Neurologic-Function in Hippocampus and Cerebellum of Aging Rats. Exercise Science, 23 (3), 217-228. https://doi.org/10.15857/ksep.2014.23.3.217
  24. Lee, H. C. (2017). Effects of treadmill exercise on hippocampal astrocyte activation and BrdU-/NeuN-positive cells, and cognitive function in aging rats. (Unpublished doctoral dissertation). Korea National Sport University, Seoul, Korea.
  25. Leem, Y. H., Lim, H. J., Shim, S. B., Cho, J. Y., Kim. B. S., & Han, P. L. (2009). Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of taupathies. Journal of Neuroscience Research, 87 (11), 2651-2570.
  26. Mattson, M. P. & Magnus, T. (2006). Aging and neuronal vulnerability. Nature reviews Neuroscience, 7 (4), 278-294. https://doi.org/10.1038/nrn1886
  27. Nedergaard, M., Ransom, B. & Goldman, S. A. (2003). New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 26 (10), 523-530. https://doi.org/10.1016/j.tins.2003.08.008
  28. Perego, C., Vanoni, C., Bossi, M., Massari, S., Basudev, H., Longhi, R., & Pietrini, G. (2000). The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. Journal of Neurochemistry, 75 (3), 1076-1084. https://doi.org/10.1046/j.1471-4159.2000.0751076.x
  29. Pilegaard, K., & Ladefoged, O. (1996). Total number of astrocytes in the molecularlayer of the dentate gyrus of rats at different ages. Analytical and Quantitative Cytology and Histology, 18 (4), 279-285.
  30. Rodriguez-Arellano, J. J., Parpura, V., Zorec, R., & Verkhratsky, A. (2016). Astrocytes in physiologicalaging and Alzhemer's disease. Neruoscience. 323, 170-182. https://doi.org/10.1016/j.neuroscience.2015.01.007
  31. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., & Welty, D. F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 16, 675-686. https://doi.org/10.1016/S0896-6273(00)80086-0
  32. Seo, T. B., & Yoon, J. H. (2012). Studies on exercise-activated BDNF-ERK pathway in Purkinje cell Loss and astrogliosis in the cerebellum after forebrain traumatic contusion injury. Exercise Science, 21 (2), 255-262. https://doi.org/10.15857/KSEP.2012.21.2.255
  33. Sofroniew, M. V. (2005). Reactive astrocytes in neural repair and protection. Neuroscientist, 11 (5), 400-407. https://doi.org/10.1177/1073858405278321
  34. Sofroniew, M. V. & Vinters, H. V. (2010). Astrocytes: biology and pathology. ACTA NEUROPATHOLOGICA, 119 (1), 7-35. https://doi.org/10.1007/s00401-009-0619-8
  35. Souza, D. G., Bellaver, B., Raupp, G. S., Souza, D. O., & Quincozes-Santos, A. (2015). Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochemistry International, 90, 93-97. https://doi.org/10.1016/j.neuint.2015.07.016
  36. Tsai, H. Z., Lin, R. K., & Hsieh, T. S. (2016). Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity. Journal of Biomedical Science. 23, 38. doi: 10.1186/s12929-016-0255-2
  37. Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage, 49 (1), 63-70. doi: 10.1016/j.neuroimage
  38. Zahr, N. M., Mayer, D., Rohlfing, T., Chanraud, S., Gu, M. et al. (2013). In vivo glutamate measured with magnetic resonance spectroscopy: behavioral correlates in aging. Neurobiology of Aging, 34 (4), 1265-1276. https://doi.org/10.1016/j.neurobiolaging.2012.09.014