• Title/Summary/Keyword: Travel Time Delay

Search Result 116, Processing Time 0.021 seconds

The Estimation of Road Delay Factor using Urban Network Map and Real-Time Traffic Information (도로망도와 실시간 교통정보를 이용한 도로 지연계수 산정)

  • Jeon, Jeongbae;Kim, Solhee;Kwon, Sungmoon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • This study estimated the delay factor, which is the ratio of travel time at the speed limit and travel time at the actual speed using real-time traffic information in Seoul. The actual travel speed on the road was lower than the maximum speed of the road and the travel speed was the slowest during the rush hour. As a result of accessibility analysis based on travel speed during the rush hour, the travel time at the actual speed was 37.49 minutes on average. However, the travel time at the speed limit was 15.70 minutes on average. This result indicated that the travel time at the actual speed is 2.4 times longer than that at the speed limit. In addition, this study proposedly defined the delay factor as the ratio of accessibility by the speed limit and accessibility to actual travel speed. As a result of delay factor analysis, the delay factor of Seoul was 2.44. The results by the administrative district showed that the delay factor in the north part areas of the Han River is higher than her south part areas. Analysis results after applying the relationship between road density and traffic volume showed that as the traffic volume with road density increased, the delay factor decreased. These results indicated that it could not be said that heavy traffic caused longer travel time. Therefore, follow-up research is needed based on more detailed information such as road system shape, road width, and signal system for finding the exact cause of increased travel time.

Delay Predicting Modeling of Urban Freeway using Lane-based Characteristics (차로별 특성을 고려한 도시고속도로의 지체추정에 관한 연구)

  • Kim, Tae Gon;Jeong, Yu Na;Hassouna, Fady M.A.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.467-476
    • /
    • 2010
  • Travel delay (TD) denotes a time difference between the running time of vehicle with a normal speed and the travel time of vehicle with a reduced speed for traversing the same segment of roadway, and is sometimes used as a measure of time delayed in the junction or bottleneck areas of roadway. Urban freeways in the foreign countries are often suffering from traffic delay within the entrance and exit ramp junction influence areas, as a freeway with the speed limit of 80 km/h or higher only during the rush hours, but those in our country are especially experiencing severe traffic delay on the mainline segments as well as within the entrance and exit ramp junction influence areas, as a freeway with the speed limit of 80 km/h or less regardless of the rush hours. So, the purpose in this study is to develop the models that could predict the travel delay within the ramp junction influence areas of urban freeway having the geographical features which differ from the expressway, and also examine the validity of the travel delay predictive models developed.

Development of Travel Time Functions Considering Intersection Delay (교차로 지체를 고려한 통행시간함수 개발)

  • Oh, Sang-Jin;Park, Sang-Hyuk;Park, Byung-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.63-76
    • /
    • 2008
  • The goals of this study are to develop travel time functions based on intersection delay and to analyze the applicability of the functions to traffic assignment models. The study begins with the premise that the existing assignment models can not effectively account for intersection delay time. In pursuing the goals, this study gives particular attention to dividing the link travel time into link moving time and stopped time at node, making the models based on such variables as the travel speed, volume, geometry, and signal data of signalized intersections in Cheongju, and analyzing the applicability of these models to traffic assignment. There are several major findings. First, the study presents the revised percentage of lanes (considering type of intersection) instead of g/C for calculating intersection delay, which is analyzed to be significant in the paired t-test. Second, the assigned results of applying these models to the Cheongju network in EMME/2 are compared with the data observed from a test car survey in Cheongju. The analyses show that the BPR models do not consider the intersection delay, but the modified uniform delay model and modified Webster model are comparatively well fitted to the observed data. Finally, the assigned results of applying these models are statistically compared with the test car survey data in assigned volume, travel time, and average speed. The results show that the estimates from the divided travel time model are better fitted to observed data than those from the BPR model.

Application and Evaluation of a Traffic Signal Control Algorithm based on Travel Time Information for Coordinated Arterials (연동교차로를 위한 통행시간기반 신호제어 알고리즘의 현장 적용 및 평가)

  • Jeong, Yeong-Je;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.179-187
    • /
    • 2009
  • This study develops a real-time signal control algorithm based on sectional travel times and includes a field test and evaluation. The objective function of the signal control algorithm is the equalization of delay of traffic movements, and the main process is calculating dissolved time of the queue and delay using the sectional travel time and detection time of individual vehicles. Then this algorithm calculates the delay variation and a targeted red time and calculates the length of the cycle and phase. A progression factor from the US HCM was applied as a method to consider the effect of coordinating the delay calculation, and this algorithm uses the average delay and detection time of probe vehicles, which were collected during the accumulated cycle for a stabile signal control. As a result of the field test and evaluation through the application of the traffic signal control algorithm on four consecutive intersections at 400m intervals, reduction of delay and an equalization effect of delay against TOD control were confirmed using the standard deviation of delay by traffic movements. This study was conducted to develop a real-time traffic signal control algorithm based on sectional travel time, using general-purpose traffic information detectors. With the current practice of disseminating ubiquitous technology, the aim of this study was a fundamental change of the traffic signal control method.

Comparative Study of Two Measures of Traffic Flow Effectiveness at Roundabouts and Signalized Intersections (회전교차로와 신호교차로의 설치기준 지표 비교에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo;Kwon, Min Young
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.95-107
    • /
    • 2016
  • PURPOSES : This study compared two measures of traffic flow effectiveness on roads with roundabouts and signalized intersections and determined the more appropriate measure. METHODS : In addition to average delay time, the conventionally used measure, average travel time was introduced to measure traffic flow effectiveness because it is able to be obtained through field survey and reflect different travel distances and speed limits of roundabouts and signalized intersections. Using the two measures, roundabouts and signalized intersections were compared through simulations in terms of traffic flow effectiveness. RESULTS : For one-way single-lane roads, the two measures indicated consistent results that roundabouts were more effective than were signalized intersections when the traffic volume was less than 300 vphpl but vice versa when it exceeded 450 vphpl; however, the measures yielded inconsistent results when the volume was 350~400 vphpl. For one-way double-lane roads, the two measures indicated consistent results that roundabouts were more effective than were signalized intersections when the volume was less than 200 vphpl but vice versa when it exceeded 400 vphpl; however, the measures yielded inconsistent results when the volume was 250~350 vphpl. The results obtained using the two measures differed substantially for double-lane roads because behaviors such as weaving and lane changing at roundabouts are more common in double-lane roads than in single-lane roads. CONCLUSIONS : The average delay time would be lower on roads with roundabouts, but average travel time would be lower on roads with signalized intersections. Thus, evaluating the relative effectiveness of roads with roundabouts and signalized intersections by using average delay time alone would be inappropriate, whereas using average travel time as the evaluation index would yield fairer results.

Establish for Link Travel Time Distribution Estimation Model Using Fuzzy (퍼지추론을 이용한 링크통행시간 분포비율 추정모형 구축)

  • Lee, Young Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.233-239
    • /
    • 2006
  • Most research for until at now link travel time were research for mean link travel time calculate or estimate which uses the average of the individual vehicle. however, the link travel time distribution is divided caused by with the impact factor which is various traffic condition, signal operation condition and the road conditional etc. preceding study result for link travel time distribution characteristic showed that the patterns of going through traffic were divided up to 2 in the link travel times. therefore, it will be more accurate to divide up the link travel time into the one involving delay and the other without delay, rather than using the average link travel time in terms of assessing the traffic situation. this study is it analyzed transit hour distribution characteristic and a cause using examine to the variables which give an effect at link travel time distribute using simulation program and determinate link travel time distribute ratio estimation model. to assess the distribution of the link travel times, this research develops the regression model and the fuzzy model. the variables that have high level of correlations in both estimation models are the rest time of green ball and the delay vehicles. these variables were used to construct the methods in the estimation models. The comparison of the two estimation models-fuzzy and regression model- showed that fuzzy model out-competed the regression model in terms of reliability and applicability.

Traffic Flow Characteristics and Approach Delay Models of Unsignalized Intersections Based on the Travel Speed (비신호교차로에서의 교통류특성 및 접근지체모형 개발 -상충지역 통행속도 이용-)

  • 박용진
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.2
    • /
    • pp.47-63
    • /
    • 1994
  • The purposes of this study are to identify Traffic Flow characteristics and to develop approach delay model of unsignalized intersection based on the travel speed in the conflicting area. The results of this study are as following ; 1. The cumulative frequency distributions of Left-turning speed show a few differences among approaches and they are distributed to lower range of speeds. On the other hand, those of through speed show obvious differences among bounds. The similar results also show in the analysis of Percentile speed. 2. The effectiveness of conflicting movements to travel speed in the conflicting area are analyzed using regression analysis. Left-turning speed model shows that Left-and Right-Conflicting speed. Through-speed model is also developed, when approaching through volume is less than 420vph. 3. Since the lost time due to the acceleration stop, and decelerlation is occured in the conflicting area, approach delay model is delivered using the travel speed models under the condition of small queuing delay.

  • PDF

Vehicle Routing Problem with Delay Time in the Downtown (도심지의 지체 시간을 고려한 차량 경로 계획에 관한 연구)

  • Yun, Tae-Sik;Kim, Kyung-Sup;Jeong, Suk-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • The travel speed between two locations within the downtown differs according to time horizon and district. Also, There is delay time on numerous traffic signals and bottle neck areas. It has an influence on planning the vehicle routing. However, there are almost no studies focusing on delay time for distance and travel time between two locations among the existing researches for vehicle routing problem (VRP). In this paper, we approach the real VRP by designing the model which estimates the delay time for traffic signal and bottle neck areas. The results of computation experiment demonstrate that proposed method performs well and have better solution than other method not considering the delay time.

  • PDF

Optimal Design of the Travel System during the Different Time Periods on the Pretimed Signalized Intersections in Pusan Area (부산지역 고정식 신호교차로의 시간대별 소통체계 최적설계에 관한 연구)

  • Kim, A.Y.;Kim, T.G.
    • Journal of Korean Port Research
    • /
    • v.11 no.1
    • /
    • pp.13-28
    • /
    • 1997
  • Today the congestion problem is a problem for the most of the cities to solve. Especially, traffic congestion in the big cities is occurring regardless of the rush-hours. Because the transportation facilities secured in the big cities are very low, and the financial resources and sites for the expansion of new transportation facilities are also limited. Therefore the appropriate Transportation system Management(TSM) techniques which could improve the transportation system are absolutely required to solve the transportation problems instead of the expansion of the transportation facilities in the big cities. The purpose in this study was to review the travel characteristics on the Pretimed Signalized - Intersections under the study in Pusan area, construct the travel systems during the different time-periods based upon the travel characteristics reviewed, and finally suggest the optimal travel systems which could reduce the traffic delay and fuel consumption of the Pretimed Signalized - Intersections based upon the travel system constructed. Based upon the results, it could be concluded that the pretimed signal system based upon the on-peak periods should not be applied to all the different time-periods on the Pretimed Signalized - Intersections(PSI) to reduce traffic delay and fuel consumption, and increase the travel capacity on the intersections in Pusan area.

  • PDF

Effectiveness Analysis of Exclusive Median Bus Lane that Uses Microsimulation (미시적 시뮬레이션을 이용한 중앙버스전용차로 효과분석)

  • Kim, Myung Soo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.159-167
    • /
    • 2013
  • PURPOSES : In this study, the effects of when median exclusive bus lanes were applied to Daejeon trunk road (Wolpyeng crossway~Seodaejeon crossway, 6.3km) and (Daeduck Bridge 4~Kyeryong 4, 2.6km) by Microscopic Simulation VISSIM (5.0) was studied. The median exclusive bus lanes are one of the measures of transportation system manage techniques that can especially improve the efficiency of public transportation facilities. METHODS : According to the analysis of VISSIM on the Gyerong mainroad and Daedeok mainroad, when the median exclusive bus lanes were applied unlike when the roadside bus-only lanes were applied, the average travel speed of vehicles decreased but the average delay time and travel time increased. This arised from the changes in the geometric structure of the road which occurred the reduction of vehicle lane in the center of the road. RESULTS : In the case of bus, on the other hand, the average travel speed increased but the average delay time and travel time decreased. This is because the problems such as illegal parking and stopping, secondary road in out vehicle, and conflict of intersection right turn that roadside bus-only lanes occurred was solved. CONCLUSIONS : Although the introduction of median exclusive bus lanes will have a negative effect on general traffic flow due to the aggravation of travel, decrease of passenger car usage will lead to decrease of traffic volume. Therefore, smooth vehicle travel is expected.