• Title/Summary/Keyword: Trapping Efficiency

Search Result 131, Processing Time 0.029 seconds

PEDOT:PSS Thin Films with Different Pattern Structures Prepared Using Colloidal Template

  • Yu, Jung-Hoon;Lee, Jin-Su;Nam, Sang-Hun;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.254-260
    • /
    • 2014
  • Organic solar cells have attracted extensive attention as a promising approach for cost-effective photovoltaic devices. However, organic solar cell has disadvantage of low power conversion efficiency in comparison with other type of solar cell, due to the recombination ratio of hole and electron is too large in the active layer. Thus we have change the surface structure of PEDOT:PSS layers to improve the current density by colloidal lithography method using various-size of polystyrene sphere. The two types of coating method were applied to fabricate the different pattern shape and height, such as spin coating and drop casting. Using the organic solvent, we easily eliminate the PS sphere and could make the varied pattern shapes by controlling the wet etching time. Also we have measured the electrical properties of patterned PEDOT:PSS film to check whether it is suitable for organic photovoltaics.

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

A Study of the Thermal Characteristics of a Photovoltaic Device with Surface Texturization (표면 Texturization을 가진 Photovoltaic Device 내부의 열 분포 특성에 관한 연구)

  • Jung, Ji-Chul;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.509-512
    • /
    • 2010
  • The thermal distribution of 2D and 3D p-n photovoltaic diode structures with and without surface texturing has been studied. By analysis of the numerical simulation results of the I-V characteristics and lattice temperature distributions the effect of different texturing structures on the characteristics of silicon p-n photovoltaic devices has been studied systematically. The efficiency of the device having surface texturing shows more than ~2% enhancement compared to the reference devices which did not have texturing. In addition, the effect of the density of the texturing groove has been studied and it has been confirmed that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

Polarization-Dependence of Trapping Efficiency of Dielectric Sphere with the Highly Focused Laser Beam (강하게 집속된 레이저빔에 의한 유전체구 포획시 포획효율의 편광 의존성)

  • 이단열;임강빈;오차환;송석호;김필수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.204-205
    • /
    • 2000
  • Ashkin에 의해 처음으로 단일 레이저를 사용하여 미세입자를 포획한 이후로 많은 연구가 활발히 이루어지고 많은 분야에 응용이 되고 있다[1]. 포획이 되는 기본적인 원리는 일정한 파장을 가진 레이저가 물체에 부딪히게 되면 빛의 일부는 표면에서 반사가 되고 일부는 물체를 통과하면서 굴절을 하게 되는데, 이 때 굴절에 의해 발생하게 되는 운동량의 차이가 포획을 가능하게 한다. 이때 발생하는 힘은 빛의 입사되는 방향에 평행한 경우(scattering force)와 수직한 경우(gradient force)로 나눌 수 있으며, 입사되는 각에 따라 두 성분의 크기가 바뀌게 되는데 이를 이용하여 입자를 밀어내고 잡아당기는 효과를 줄 수 있다[2]. (중략)

  • PDF

Energy Conversion Efficiency of TiO2 Dye-sensitized Solar Cells with WO3 Additive (WO3가 첨가된 TiO2 염료감응형 태양전지의 에너지 전환 효율)

  • Lee, Sung Kyu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • In order to improve the energy conversion efficiency of dye-sensitized solar cell (DSSC), the photoelectrode was manufactured by using $TiO_2$ and $WO_3$ on combination effects of two conduction bands. The smash procedure of $TiO_2$ and $WO_3$ was carried out by using a paint shaker to enlarge the contact area of semiconductor with dye and electrolyte. The energy conversion efficiency of prepared DSSC was improved about two times from current-voltage curve based on effects of $WO_3$ and smash. The mechanism was suggested that the conduction band of $WO_3$ worked for prohibiting the trapping effects of electrons in conduction band of $TiO_2$. This result is attributed to the prevention of electron recombination between electron in conduction band of $TiO_2$ with dye and electrolyte. Impedance results indicate the improved electron transport at interface of $TiO_2$/dye/electrolyte.

Evaluation for Application of IOM Sampler for Agricultural Farmer's Inhalation Exposure to Kresoxim-methyl and Fenthion (농작업자의 Kresoxim-methyl과 fenthion에 대한 호흡노출량 측정을 위한 IOM 채집기의 효율성 평가)

  • Lee, Jiho;Kim, Eunhye;Lee, Jonghwa;Shin, Yongho;Maasfeld, Wolfgang;Choi, Hoon;Moon, Joon-Kwan;Lee, Hyeri;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.230-240
    • /
    • 2015
  • An IOM sampler equipped with glass fiber filter has been recently utilized instead of solid adsorbent, which was used to measure the inhalation exposure of agricultural operator to pesticides. The aim of this study is to validate the efficacy of an IOM sampler by measuring the trapping efficiency and breakthrough using kresoxim-methyl water-dispersible granule and fenthion emulsifiable concentrate. On LC-MS/ MS, minimum detection level was 12.5 pg and method limit of detection was 5.0 ng/mL. Good linearity ($R^2$ > 0.999) for matrix matched standards was obtained. Recoveries of pesticides from glass fiber filter were 102-109% (kresoxim-methyl) and 97-104% (fenthion) while those from XAD-2 resin were 94-98% (kresoxim methyl) and 93-100% (fenthion). Trapping efficiency test was performed with personal air pumps and IOM sampler (glass fiber filter) connected with solid adsorbent (XAD-2 resin) with two types of formulation (solid and liquid) which were diluted by standard rate and sprayed to IOM sampler. Those pesticides were trapped only in glass fiber filter without any breakthrough to solid adsorbent. After spiking of pesticides to glass fiber filter, breakthrough test was carried out with IOM sampler (glass fiber filter) which was connected with solid adsorbent. As a results, 87-101% of kresoxim-methyl and 96-105% of fenthion remained in spiked glass fiber filter, however, no pesticides were detected in second glass fiber filter and solid adsorbent. In conclusion, IOM sampler which equipped with glass fiber filter can be applied widely for pesticide inhalation exposure study since it has good trapping efficiency and adsorption capacity, regardless of the solid or liquid formulation.

Development of the Efficiency-Evaluation Model for the Mechanism of CO2 Sequestration in a Deep Saline Aquifer (심부 대염수층 CO2 격리 메커니즘에 관한 효율성 평가 모델 개발)

  • Kim, Jung-Gyun;Lee, Young-Soo;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.55-66
    • /
    • 2012
  • The practical way to minimize the greenhouse gas is to reduce the emission of carbon dioxide. For this reason, CCS(Carbon Capture and Storage) technology, which could reduce carbon dioxide emission, has risen as a realistic alternative in recent years. In addition, the researcher is recently working into ways of applying CCS technologies with deep saline aquifer. In this study, the evaluation model on the feasibility of $CO_2$ sequestration in the deep saline aquifer using ANN(Artificial Neural Network) was developed. In order to develop the efficiency-evaluation model, basic model was created in the deep saline aquifer and sensitivity analysis was performed for the aquifer characteristics by utilizing the commercial simulator of GEM. Based on the sensitivity analysis, the factors and ranges affecting $CO_2$ sequestration in the deep saline aquifer were chosen. The result from ANN training scenario were confirmed $CO_2$ sequestration by solubility trapping and residual trapping mechanism. The result from ANN model evaluation indicated there is the increase of correlation coefficient up to 0.99. It has been confirmed that the developed model can be utilized in feasibility of $CO_2$ sequestration at deep saline aquifer.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • Hwang, In-Chan;Seo, Gwan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

A Study on The Comparison of The Program Efficiency in The Conventional CHE Injection Method and a novel Hot Electron Injection Method Using A Substrate forward Bias (CHE 주입방법과 기판 순바이어스를 이용한 새로운 고온 전자 주입방법의 프로그램 효율성 비교에 관한 연구)

  • Zhang, Yong-Jie;An, Ho-Myoung;Kim, Hee-Dong;Kim, T.G.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we directly compare the program efficiency of conventional channel hot electron (CHE) injection methods and a novel hot electron injection methods using substrate forward biases in our silicon-oxide-nitride-oxide-silicon (SONOS) cell. Compared with conventional CHE injection methods, the proposed injection method showed improved program efficiency including faster program operation at lower bias voltages as well as localized trapping features for multi-bit operation with a threshold voltage difference of 1 V at between the forward and reverse read. This program method is expected to be useful and widely applied for future nano-scale multi-bit SONOS memories.

Efficiency Evaluation of Vegetative Filter Strip for Non-point Source Pollutant at Dense Upland Areas - Focused on Non-point Source Management Area Mandae, Gaa, and Jaun Basins - (고랭지밭 밀집지역 초생대의 비점오염 저감 효율 평가 - 비점오염원 관리지역을 중심으로 (만대지구, 가아지구, 자운지구) -)

  • Jeong, Yeonji;Lee, Dongjun;Kang, Hyunwoo;Jang, Won Seok;Hong, Jiyoung;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • A vegetative filter strip (VFS) is one of the best management practices (BMPs) to reduce pollutant loads. This study aims to assess the effectiveness of VFS in dense upland field areas. The study areas are agricultural fields in the Maedae (MD), Gaa (GA), and Jaun (JU) watersheds, where severe sediment yields have occurred and the Korean government has designated them as non-point management regions. The agricultural fields were divided into three or four clusters for each watershed based on their slope, slope length, and area (e.g., MD1, MD2). To assess the sediment trapping (STE) and pesticide reduction efficiency (PRE) of VFS, the Vegetative Filter Strip Modeling System (VFSMOD) was applied with three different scenarios (SC) (SC1: VFS with rye vegetation; SC2: VFS with rye vegetation and a gentle slope in VFS range; and SC3: VFS with grass mixture). For SC1, there were relatively short slope lengths and small areas in the MD1 and GA3 clusters, and they showed higher pollutant reduction (STE>50%, PRE>25%). For SC2 and SC3, all clusters in GA and some clusters (MD1 and MD3) in MD show higher pollutant reduction (>25%), while the uplands in JU still show a lower pollutant (<25%). With correlation analysis between geographic characteristics and VFS effectiveness slope and slope length showed relative higher correlations with the pollutant efficiency than a area. The results of this study implied that slope and slope length should be considered to find suitable upland conditions for VFS installations.