• Title/Summary/Keyword: Transverse strain

Search Result 403, Processing Time 0.029 seconds

Welding analysis with linear solid-shell element (선형 Solid-shell 을 이용한 용접해석)

  • Choi, Kang-Hyouk;Kim, Ju-Wan;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.728-732
    • /
    • 2004
  • In the FE analysis of sheet metal forming, efficient results can be obtained by using shell elements rather than using solid elements. However, shell elements have some limitations to describe three-dimensional material laws. In the recent years, solid-shell element, which has only translational degree of freedom like solid element, has been presented. The assumed nature strain (ANS) and enhanced assumed strain (EAS) methods can be used to remove several solid-shell locking problems. In this paper, ANS method was used for diminish transverse shear locking and EAS method for thickness locking. Using the element, the steel pipe making process from flat plate analyzed effectively, which is including bending and welding.

  • PDF

A Experimental Study for Stress-Strain Behavior and Energy Capacity of Confinement Steel (심부구속철근의 응력-변형률 거동 및 에너지 성능에 관한 실험적 연구)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Hwang, Jung-Kil;Son, Hyun-A
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.77-80
    • /
    • 2006
  • Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. Nine specimens were tested under cyclic stresses(tension and zero). The purpose of this research is to investigate the strain behavior and capacity of energy for confinement steel. The selected test variables are $L/d_b(L/d_b=6)$, size of reinforcement and specified yielding strength(300, 400, 500 MPa).

  • PDF

Continuous Measurement Technique of Bending Strain Effect on Critical Current in Bi-2223 Tapes (고온초전도 테이프 임계전류의 굽힘변형률 효과 연속측정 기술)

  • Shin, Hyung-Seop;Choi, Ho-Yeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.298-299
    • /
    • 2005
  • Differently from the tensile, transverse compression and torsion cases, the bending test of HTS tapes requires a lot of time and efforts, since the sample should be mounted successively onto bent sample holders in the order of decreasing radius and measuring the $I_c$ at each step. The influence of repeated cooling and warming experienced during these processes on the $I_c$ degradation can not be ignored. As a result, in this study, particularly. a new one-body type sample holder which provides continuous bending strains at 77K was devised. And, $I_c$ degradation behavior of Bi-2223 tapes under easy bending condition was investigated and compared that with other cases using Goldacker-type bending tester or respective sample holder.

  • PDF

Vibration and Damping Analysis of Cross-ply Plate Strip Including Layer-wise In-plane Displacements (면내 변위의 변화를 고려한 Cross-ply 적층판의 진동 및 감쇠해석)

  • Koo, Kyo-Nam;Lee, in
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.305-315
    • /
    • 1992
  • In order to investigate the effects of layer-wise in-plane displacements on vibration and damping characteristics of composite laminated plates, the finite element method based on the generalized laminated plate theory(GLPT) has been formulated. Specific damping capacity of each mode was obtained by modal strain energy method. To see the effect of transverse shear on deformation, the strain energy of stress components was computed. The accuracy of this study was examined for the cylindrical bending vibration of cross-ply plate strip. The results were very accurate compared with 3-D solutions. The numerical results show that through-thickness variation of in-plane displacements has not so much influence on the natural frequency, but has a great influence on the damping of composite plates, especially on the damping of thick composite plates since the damping is affected by local behavior while the natural frequency is affected by global behavior.

  • PDF

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams

  • Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.213-223
    • /
    • 2019
  • For the first time, longitudinal and transverse wave propagation of triclinic nanobeam is investigated via a size-dependent shear deformation theory including stretching effect. Furthermore, the influence of initial stress is studied. To consider the size-dependent effects, the nonlocal strain gradient theory is used in which two small scale parameters predict the behavior of wave propagation more accurately. The Hamiltonian principle is adopted to obtain the governing equations of wave motion, then an analytic technique is applied to solve the problem. It is demonstrated that the wave characteristics of the nanobeam rely on the wave number, nonlocal parameter, strain gradient parameter, initial stress, and elastic foundation. From this paper, it is concluded that the results of wave dispersion in isotropic and anisotropic nanobeams are almost the same in the presented case study. So, in this case, triclinic nanobeam can be approximated with isotropic model.

Formability Evaluation of a Copper Alloy for Regenerative Cooling Thrust Chamber (재생냉각 연소기 챔버 제작용 구리합금의 성형성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.939-945
    • /
    • 2009
  • The dome stretching tests and tension tests have been performed to obtain a forming limit curve(FLC) for the copper alloy which is used for manufacturing the regenerative cooling thrust chamber. For experimental investigation of the forming limit curve, we have used in-plane tension specimen to obtain tension-compression strain state as well as out-of-plane specimen to obtain tension-tension strain state through dome stretching test. All specimens were divided into longitudinal and transverse directions according to the orientation of test specimen. The test results showed that in the tension-tension region, copper alloy revealed a maximum major strain of 62.3% and a maximum minor strain of 58.6%. In the tension-compression region, the maximum major strain and the maximum minor strain were measured to be 60.5% and 25.8%, respectively.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.