• Title/Summary/Keyword: Transverse Isotropy

Search Result 16, Processing Time 0.022 seconds

Development of a Prestack Generalized-Screen Migration Module for Vertical Transversely Isotropic Media (횡적등방성 매질에 적용 가능한 겹쌓기 전 Generalized-Screen 참반사 보정 모듈 개발)

  • Shin, Sungil;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The one-way wave equation migration is much more computationally efficient comparing with reverse time migration and it can provide better image than the migration algorithm based on the ray theory. We have developed the prestack depth migration module adopting (GS) propagator designed for vertical transverse isotropic media. Since GS propagator considers the higher-order term by expanding the Taylor series of the vertical slowness in the thin slab of the phase-screen propagator, the GS migration can offer more correct image for the complex subsurface with large lateral velocity variation or steep dip. To verify the validity of the developed GS migration module, we analyzed the accuracy with the order of the GS propagator for VTI media (GSVTI propagator) and confirmed that the accuracy of the wavefield propagation with the wide angles increases as the order of the GS propagator increases. Using the synthetic seismic data, we compared the migration results obtained from the isotropic GS migration module with the anisotropic GS migration module. The results show that the anisotropic GS migration provides better images and the improvement is more evident on steeply dipping structures and in a strongly anisotropic medium.

Elasto-plastic Anisotropic Wood Material Model for Finite Solid Element Applications (탄소성이방성 솔리드 유한요소법 활용을 위한 목재 재료 모델 생성 연구)

  • Hong, Jung-Pyo;Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • A simplified material model, which was efficiently implemented in a three-dimensional finite solid element (3D FE) analysis for wood was developed. The bi-linear elasto-plastic anisotropic material theory was adopted to describe constitutive relations of wood in three major directions including longitudinal, radial and tangential direction. The assumption of transverse isotropy was made to reduce the requisite 27 material constants to 6 independent constants including elastic moduli, yield stresses and Poisson's ratios in the parallel, and perpendicular to grain directions. The results of Douglas fir compression tests in the three directions were compared to the 3D FE simulation incorporated with the wood material model developed in this study. Successful agreements of the results were found in the load-deformation curves and the permanent deformations. Future works and difficulties expected in the advanced application of the model were discussed.

Analysis of Seismic Velocity Change and AVO Response Depending on Saturation of Kerogen and GOR in Shale Reservoirs (셰일 저류층에서 케로젠, GOR 변화에 따른 속도 변화 및 AVO 반응 분석)

  • Choi, Junhwan;Lee, Jaewook;Byun, Joongmoo;Kim, Bona;Kim, Soyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Recently, the studies about rock physics model (RPM) in shale reservoir are widely performed. In shale reservoir, the degree of the maturity can be estimated by kerogen and GOR (Gas-Oil Ratio). The researches on the rock physics model of shale reservoir with the amount of kerogen have been actively carried out but not with GOR. Thus, in this study, we analyzed the changes in seismic velocity and density, and AVO (Amplitude Variation with Offset) response depending on changes in GOR and the amount of kerogen. Since the shale consists of plate-like particles, it has vertical transverse isotropy (VTI). Therefore we estimated the seismic velocity and density by using Backus averaging method and analyzed AVO responses based on these estimated properties. The results of analysis showed that the changes in the velocity with the GOR variation are small but the velocity changes with the variation in kerogen amount are relatively larger. In case, GOR 180 (Litre/Litre) which is boundary between heavy oil and light oil, when volume fraction of kerogen increased from 5% to 35%, the P-wave velocity normal to the layering increased 51%. That is, it helps estimating maturity of kerogen through the velocity. Meanwhile, when rates of oil-gas mixture are large, the effect of GOR variation on the velocity change became larger. In case volume fraction of kerogen is 5%, the P-wave velocity normal to the layering was estimated $1.46km/s^2$ in heavy oil (GOR 40) but $1.36km/s^2$ in light oil (GOR 300). The AVO responses analysis showed class 4 regardless of the GOR and amount of kerogen because variation of poisson's ratio is small. Therefore, shale reservoir has possibility to have class 4.

Mathematical Understanding of the Saint-Venant Approximation in Analysis of a Transverse Isotropy (평면이방성 분석에서 Saint-Venant 근사식의 수학적 해석)

  • Park, Chulwhan;Park, Chan;Park, Jung-Wook;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.363-374
    • /
    • 2016
  • All five independent elastic constants of a transversely isotropic rock sometimes need to be determined from a single specimen. Saint-Venant approximation has been widely used for a long time in the analysis of single specimen test. This paper has proven how this empirical equation can be mathematically transformed into a form of the apparent Young's modulus based on theory of elasticity. The transformed equation is a monotonous function on anisotropic angle and can be useful in the analysis of the in-situ stress measurement in an anisotropic rock mass. The estimations of data in literatures have shown that the measured values of $G^2$ are uniform on anisotropic angles and smaller than that of Saint-Venant's case. This decrement may be caused by sliding of the interface of strata and the decrement rate is inferred to relate well with the combination of bonding condition of strata and strength of rock material. Accumulation of these kinds of studies in the future enables to define the decrement and to determine elastic constants of a transversely isotropic rock from a single specimen from modifying Saint-Venant approximation.

Experimental Study on Source Locating Technique for Transversely Isotropic Media (횡등방성 매질의 음원추적기법에 대한 실험적 연구)

  • Choi, Seung-Beum;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.56-67
    • /
    • 2015
  • In this study, a source locating technique applicable to transversely isotropic media was developed. Wave velocity anisotropy was considered based on the partition approximation method, which simply enabled AE source locating. Sets of P wave arrival time were decided by the two-step AIC algorithm and they were later used to locate the AE sources when having the least error compared with the partitioned elements. In order to validate the technique, pencil lead break test on artificial transversely isotropic mortar specimen was carried out. Defining the absolute error as the distance between the pencil lead break point and the located point, 1.60 mm ~ 14.46 mm of range and 8.57 mm of average were estimated therefore it was regarded as thought to be 'acceptable' considering the size of the specimen and the AE sensors. Comparing each absolute error under different threshold levels, results showed small discrepancies therefore this technique was hardly affected by background noise. Absolute error could be decomposed into each coordinate axis error and through it, effect of AE sensor position could be understood so if optimum sensor position was able to be decided, one could get more precise outcome.

Directional Variation of Apparent Elastic Constants and Associated Constraints on Elastic Constants in Transversely Isotropic Rocks (횡등방성 암석에서 겉보기 탄성정수의 방향성 변화와 탄성정수 제약조건)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.150-168
    • /
    • 2023
  • The anisotropic behavior of rocks is primarily attributed to the directional arrangement of rock-forming minerals and the distribution characteristics of microcracks. Notably, sedimentary and metamorphic rocks often exhibit distinct transverse isotropy in terms of their strength and deformation characteristics. Consequently, it is crucial to gain accurate insights into the deformation and failure characteristics of transversely isotropic rocks during rock mechanics design processes. The deformation of such rocks is described by five independent elastic constants, which are determined through laboratory testing. In this study, the characteristics of the directional variation of apparent elastic constants in transversely isotropic rocks were investigated using experimental data reported in the literature. To achieve this, the constitutive equation proposed by Mehrabadi & Cowin was introduced to calculate the apparent elastic constants more efficiently and systematically in a rotated Cartesian coordinate system. Four transversely isotropic rock types from the literature were selected, and the influence of changes in the orientation of the weak plane on the variations of the apparent elastic modulus, apparent shear modulus, and apparent Poisson's ratio was analyzed. Based on the investigation, a new constraint on the elastic constants has been proposed. If the proposed constraint is satisfied, the directional variation of the apparent elastic constants in transversely isotropic rocks aligns with intuitive predictions of their tendencies.