DOI QR코드

DOI QR Code

Mathematical Understanding of the Saint-Venant Approximation in Analysis of a Transverse Isotropy

평면이방성 분석에서 Saint-Venant 근사식의 수학적 해석

  • 박철환 (한국지질자원연구원 지구환경연구본부) ;
  • 박찬 (한국지질자원연구원 지구환경연구본부) ;
  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • 정용복
  • Received : 2016.08.22
  • Accepted : 2016.09.26
  • Published : 2016.10.31

Abstract

All five independent elastic constants of a transversely isotropic rock sometimes need to be determined from a single specimen. Saint-Venant approximation has been widely used for a long time in the analysis of single specimen test. This paper has proven how this empirical equation can be mathematically transformed into a form of the apparent Young's modulus based on theory of elasticity. The transformed equation is a monotonous function on anisotropic angle and can be useful in the analysis of the in-situ stress measurement in an anisotropic rock mass. The estimations of data in literatures have shown that the measured values of $G^2$ are uniform on anisotropic angles and smaller than that of Saint-Venant's case. This decrement may be caused by sliding of the interface of strata and the decrement rate is inferred to relate well with the combination of bonding condition of strata and strength of rock material. Accumulation of these kinds of studies in the future enables to define the decrement and to determine elastic constants of a transversely isotropic rock from a single specimen from modifying Saint-Venant approximation.

여러 가지 이유로 단일시험편에서 평면이방성 암석의 5개의 독립적 탄성상수를 결정해야 할 경우, Saint-Venant 근사식은 오랫동안 매우 유용하게 사용되어 왔다. 본 논문은 이 경험적 수식이 겉보기 탄성계수로 표현되는 수식으로 전환될 수 있음을 탄성이론에 근거한 수학적 전개를 통하여 밝히고 있다. 이렇게 전환된 수식은 이방성 각도에 단조증가하는 특성을 갖고 있으며, 이방성 암반의 초기응력측정에 유용하게 사용될 것이다. 문헌의 자료를 분석한 결과, $G^2$의 측정값은 각도와 관계없이 일정한 크기이며, Saint-Venant 근사식에 의하여 유도된 값보다 작은 것으로 분석되었다. 이러한 감분은 층상의 경계면에서 미끄러짐에 의하여 발생하는 것으로 판단되며, 미끄러짐에 의한 감소비율은 층상의 결합상태와 암석의 강도에 따라 유추될 수 있다. 이러한 분석들이 향후에 계속되어 자료가 누적된다면 감소비율을 규정할 수 있고, Saint-Venant 근사식의 수정을 통하여 단일시험편으로부터 탄성상수를 결정할 수 있을 것이다.

Keywords

References

  1. Amadei B., 1996, Importance of anisotropy when estimating and measuring in situ stresses in rock, Int. J. Rock Mech. Min. Sci., Vol. 33(3), pp. 293-325. https://doi.org/10.1016/0148-9062(95)00062-3
  2. Cho J-W., Kim H., Jeon S., Min K-B., 2012, Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist, Int. J. Rock Mech. Min. Sci., Vol. 50, pp. 158-169. https://doi.org/10.1016/j.ijrmms.2011.12.004
  3. Exadaktylos G.E., 2001, On the constraints and relations of elastic constants of transversely isotropic geomaterials, Int. J. Rock Mech. Min. Sci., Vol. 38(7), pp. 941-956. https://doi.org/10.1016/S1365-1609(01)00063-6
  4. Exadaktylos G.E., Kaklis K.N., 2001, Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically. Int. J. Rock Mech. Min. Sci., Vol. 38(2): 227-243. https://doi.org/10.1016/S1365-1609(00)00072-1
  5. Gonzaga G.G., Leite M.H., Corthesy R., 2008, Determination of anisotropic deformability parameters from a single standard rock specimen, Int. J. Rock Mech. Min. Sci., Vol. 45(6), pp. 1420-1438. https://doi.org/10.1016/j.ijrmms.2008.01.014
  6. Goodman R.E., 1980, Introduction to rock mechanics, John Wiley & Sons
  7. Hakala M., Kuula H., Hudson J.A., 2007, Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gneiss, Finland, Int. J. Rock Mech. Min. Sci., Vol. 44(1), pp. 14-46. https://doi.org/10.1016/j.ijrmms.2006.04.003
  8. Homand F., Morel E., Henry J-P., Cuxac P., Hammade E., 1993, Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods, Int. J. Rock Mech. Min. Sci., Vol. 30(3), pp. 527-535. https://doi.org/10.1016/0148-9062(93)92218-F
  9. Lekhnitskii S.G., 1963, Theory of elasticity of an isotropic elastic body, Holden-Day, Inc.
  10. Nasseri M.H.B., Rao K.S., Ramamurthy T., 2003, Anisotropic strength and deformational behavior of Himalayan schists, Int. J. Rock Mech. Min. Sci., Vol. 40(1), pp. 3-23. https://doi.org/10.1016/S1365-1609(02)00103-X
  11. Park C., 2001, Analysis of elastic constants of an anisotropic rock, Tunnel and Underground Space, Vol. 11, pp. 59-63.
  12. Park C., Park C., Synn J-H., Jung Y-B., 2010, Experimental study on the elastic constants of a transversely isotropic rock by multi-specimen compression test, Tunnel and Underground Space, Vol. 20, pp. 455-464.
  13. Talesnick M.L., Ringel M., 1999, Completing the hollow cylinder methodology for testing of anisotropic rocks: torsion tests, Int. J. Rock Mech. Min. Sci., Vol. 36(5), pp. 627-639. https://doi.org/10.1016/S0148-9062(99)00038-8
  14. Tien Y.M., Tsao P.F., 2000, Preparation and mechanical properties of artificial transversely isotropic rock, Int. J. Rock Mech. Min. Sci., Vol. 37(4), pp. 1001-1012. https://doi.org/10.1016/S1365-1609(00)00024-1
  15. Worotnicki G., 1993 CSIRO triaxial stress measurement cell, Chapter 13 in Comprehensive Rock Engineering, Edited by Hudson JA., p.329-394.