• Title/Summary/Keyword: Transportation-Distribution Problem

Search Result 132, Processing Time 0.027 seconds

Optimal distribution of metallic energy dissipation devices in multi-story buildings via local search heuristics

  • Zongjing, Li;Ganping, Shu;Zhen, Huang;Jing, Cao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.419-430
    • /
    • 2022
  • The metallic energy dissipation device (EDD) has been widely accepted as a useful tool for passive control of buildings against earthquakes. The distribution of metallic EDDs in a multi-story building may have significant influence on its seismic performance, which can be greatly enhanced if the distribution scheme is properly designed. This paper addresses the optimal distribution problem in the aim of achieving a desired level of performance using the minimum number of metallic EDDs. Five local search heuristic algorithms are proposed to solve the problem. Four base structures are presented as numerical examples to verify the proposed algorithms. It is indicated that the performance of different algorithms may vary when applied in different situations. Based on the results of the numerical verification, the recommended guidelines are finally proposed for choosing the appropriate algorithm in different occasions.

교통망 평형리론을 응용한 결합 모형의 개발

  • 전경수
    • Journal of Korean Society of Transportation
    • /
    • v.7 no.2
    • /
    • pp.45-52
    • /
    • 1989
  • The network equilibrium theory is to estimate the travel choices on a transportation network when the resulting travel times and costs are one basis for the choices. Increasing use of this principle on travel assignment problem lead to develop the combined choice models including not only travel options such as mode and route, but location options like trip distribution problems. This paper, first, reviews earlier developments of variable demand network equilibrium models, combined modeles of trip distribution and assignment, and entropy constrained combined models. Then various model structures of combining travel choice models based on network equilibrium theory and entropy constraints are discussed.

  • PDF

Optimizing Zone-dependent Two-level Facility Location Problem (Zone을 고려한 2단계 시설배치 계획 최적화)

  • Lim, Sung-Hoon;Sung, Chang-Sup;Song, Sang-Hwa
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.341-350
    • /
    • 2011
  • This paper considers a problem of locating both distribution centers and retailers in a zone-dependent two-level distribution network where either a distribution center or a retailer should be located in each zone. Customer demands of each zone should be satisfied directly from either its own distribution center or its own retailer being supplied from a distribution center of another zone. The objective of the proposed problem is to minimize total cost being composed of distribution center/retailer setup costs and transportation costs. In the analysis, the problem is proved to be NP-hard, so that a branch-and-bound algorithm is derived for the problem. Numerical experiments show that the proposed branch-and-bound algorithm provides the optimal solution efficiently for some small problems.

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints (추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발)

  • Park, Bum Hwan;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.833-843
    • /
    • 2016
  • Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

Location of the Distribution Centers in a Discrete Dynamic Distribution System (이산형 동적 물류시스템에서 물류센터의 위치)

  • Chang, Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.19-27
    • /
    • 2008
  • This paper addresses determining the location of the distribution centers in a discrete dynamic distribution system. In discrete and finite time horizon, the demands of retailers are dynamic for the periods. Some locations among the retailers can be chosen for the role of the distribution centers at the beginning of each period. The distribution centers have to be located at the location of minimizing logistics cost. Logistics cost factors are the operation cost and the fixed cost of distribution center, and the transportation cost. The distribution centers of minimizing sum of operation cost, fixed cost and transportation cost are determined among retailers in each period for the planning period. A mathematical model was formulated and a dynamic programming based algorithm was developed. A numerical example was shown to explain our problem.

Determining the Location of Distribution Center in Business Logistics (로지스틱스관리에서 배송센터의 입지선정)

  • 한수희;오형술
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.33-46
    • /
    • 1997
  • The location decision problem for distribution center is one of the most important problem in business logistics system. Because the proportion of holding and transportation cost to physical distribution cost in our country exceed the 60%, a corporation must feel strong pressure to investigate the location problem for distribution center. This paper presents an algorithm for determining the best location of distribution center in consideration with physical distribution cost, demand, and customer location. The methods of determining the distribution center location is that firstly many of proposed sites are built up where demand position is distributed, and then optimal location of distribution center is selected.

  • PDF

Effect of temperature and spring-mass systems on modal properties of Timoshenko concrete beam

  • Liu, Hanbing;Wang, Hua;Tan, Guojin;Wang, Wensheng;Liu, Ziyu
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.389-400
    • /
    • 2018
  • An exact solution for the title problem was obtained in closed-form fashion considering general boundary conditions. The expressions of moment, shear and shear coefficient (or shear factor) of cross section under the effect of arbitrary temperature distribution were first derived. In view of these relationships, the differential equations of Timoshenko beam under the effect of temperature were obtained and solved. Second, the characteristic equations of Timoshenko beam carrying several spring-mass systems under the effect of temperature were derived based on the continuity and force equilibrium conditions at attaching points. Then, the correctness of proposed method was demonstrated by a Timoshenko laboratory beam and several finite element models. Finally, the influence law of different temperature distribution modes and parameters of spring-mass system on the modal characteristics of Timoshenko beam had been studied, respectively.

Facility Location Problem for Blood Logistics Center (혈액 물류센터 위치 선정 문제)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • This paper suggests the optimal blood distribution center algorithm that satisfies the minimum total transportation cost and within the allowable distribution time $T^*$. Zhang and Yang proposes shifting the location of each point that has less than the average distance of two maximum distance points from each point. But they cannot decide the correct facility location because they miscompute the shortest distance. This algorithm computes the shortest distance $l_{ij}$ from one area to another areas. Then we select the $v_i$ area to thecandidate distribution center location such that $_{max}l_{ij}{\leq}L^*$ and the $v_i$ such that $l_{ij}-L^*$ area that locates in ($v_i,v_k$) and ($v_j,v_l$) from $P_{ij}=v_i,v_k,{\cdots},v_l,v_j$ path and satisfies the $_{max}l_{ij}{\leq}L^*$ condition. Finally, we decide the candidate distribution area that has minimum transportation cost to optimal distribution area.

Integrated Fleet Management Support System for Industrial Carrier (인더스트리얼 캐리어를 위한 통합 선대관리 지원시스템)

  • 김시화;허강이
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.63-76
    • /
    • 1999
  • This paper aims at developing an integrated fleet management support system for industrial carriers who usually control the vessels of their own or on a time charter to minimize the cost of shipping their cargoes. The work is mainly concerned with the operational management problem of the fleet owned by a major oil company, a typical industrial carrier. The optimal fleet management problem for the major oil company can be divided into two phase problem. The front end corresponds to the production operation problem of the transportation of crude oil, the refinery operation, and the distribution of product oil to comply with the demand of the market. The back end is to tackle the fleet scheduling problem to meet the seaborne transportation demand derived from the front end. Relevant optimization models for each phase are proposed and described briefly. Then a user-friendly integrated fleet management support system is built based on the proposed optimization models for both ends under Windows environment. A case study reflecting the practices of fleet management problem for the major oil company is carried out by using the system.

  • PDF

An Application of Generic Algorithms to the Distribution System Loss Minimization Re -cofiguration Problem (배전손실 최소화 문제에 있어서 유전알고리즘의 수속특성에 관한 연구)

  • Choi, Dai-Seub;Jung, Soo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.580-582
    • /
    • 2005
  • This paper presents a new method which applies a genetic algorithm(GA) for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. The distribution system loss minimization re-configuration problem is in essence a 0-1 planning problem which means that for typical system scales the number of combinations requiring searches becomes extremely large. In order to deal with this problem, a new a roach which applies a GA was presented. Briefly, GA are a type of random number search method, however, they incorporate a multi-point search feature. Further, every point is not is not separately and respectively renewed, therefore, if parallel processing is applied, we can expect a fast solution algorithm to result.

  • PDF