• Title/Summary/Keyword: Transportation Design Process

Search Result 390, Processing Time 0.028 seconds

Analysis of Transportation and Handling system for Advanced spent fuel management process (사용후핵연료 차세대관리공정 운반취급계통 분석)

  • 홍동희;윤지섭;정재후;김영환;박병석;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1438-1441
    • /
    • 2003
  • The project for "Development of Advanced Spent Fuel Management Technology" has a plan of a demonstration for the Advanced Management Process in the hot cell of IMEF. The Advanced Management Process are being developed for efficient and safe management of spent fuels. For the demonstration, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the design requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed design requirements in this research will be used as the design data for the Advanced Management Process.

  • PDF

Basic Study on the Assembly Process Design of Curtain-wall System for Minimization of Carbon Emission

  • Yi, June-Seong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.648-663
    • /
    • 2012
  • With recent attempts to improve quality and productivity, the prefabrication manufacturing system has been occupying an increasing share of the construction area. To minimize site work, material is more frequently being produced and partially assembled at a plant, and then installed at a site. For this reason, the production process is being divided and the materials are being delivered to the site after passing through multiple plants. With these changes in the production process, the materials delivery plan is becoming an important management point. In particular, as road transportation using trucks has a 71 percent share of the domestic transportation market, selecting the proper transportation path is important when delivering materials and equipment to a site. But the management system at the project design phase to calculate the delivery cost by considering the production process of the pre-fab material and the $CO_2$ emission at the material delivery phase is currently lacking. This study suggests a process design model for assembly production of the pre-fab material and transportation logistics based on carbon emission. The suggested model can be helpful to optimize the location of the intermediate plant. It is expected to be utilized as a basic model at the project plan and design phase when subcontractors make decisions on items such as materials procurement, selecting the production method, and choosing the location of the assembly plant.

Analysis and Design of the Efficient Consolidated Transportation System Model (효율적인 공동 수.배송 시스템 모델의 분석 및 설계)

  • Lee, Myeong-Ho
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A new logistics concept is needed through the sharing information between suppliers and consumers, which maximizes the customers service and its flexibility by changing functional- oriented to process-oriented. As in many other industries, communication and data manipulation technology have led to systematical change to the logistics industry. One of the biggest changes of the industry that lies ahead is Consolidated Transportation. To improve this systematically false logistical environment, developing an integrated logistics information system with consolidated transportation, framework, standardization, and data integration is essential. However, no party outstands as the leading party for nationwide improvement of logistics, nor does the right analysis and design for it. Therefore, successful nationwide logistics model is yet to exist. This paper provides individual parties, which consider efficient consolidated transportation as their business models, with instructions for logistics information system so that they could be competitive in the market. It also helps companies collect user requirements for efficient consolidated transportation, and utilize it for its development. Finally, this paper extracts the design of algorithm for the efficient consolidated transportation.

Examination of Value Engineering for Bridge Superstructures using Analytic Hierarchy Process (AHP 기법을 이용한 교량상부구조의 VE 검토)

  • Park, Jang-Ho;Shin, Yung-Seok;Ahn, Ye-Jun;Lee, Kwang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.79-85
    • /
    • 2009
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types(Steel box girder, Rational girder, PSC-I girder) using Value Engineering(VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost(LCC). Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process(AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

A Strict Hub Network Design with Single Allocation for Road Freight Transportation (도로화물수송의 단일할당 제약 허브네트워크 설계)

  • Kim, Nam-Ju;Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • Hub network design for freight transportation is a decision process that determines hub locations together with freight transportation routes among shippers so as to ultimately minimize total logistics cost. This study presents the optimal location of hubs by strict hub network design policy with single allocation, which overcomes the limitation of Kim et al. (2008) that does not allow direct transportation among shippers. The greedy-interchange algorithm is employed for hub location decision process, and EMME/2 is adopted for the route searching process. Application of the processes to the nationwide highway network shows that the best hub locations in order are Seoul metropolitan, GyeongNam, Chung-nam, Jeon-Nam, Gyeong-Buk, Chung-Buk, and the locations are concentrated on the Seoul-Busan corridor. The strict hubnetwork design policy with single allocation increases the transportation distance but decreases the transportation cost by passing through the hubs instead of direct transportation. The reduction in total transportation cost can be achieved as the number of hubs increases, but the amount of the reduction gradually decreases because the cost reduction from the decrease in detour transportation distance between non-hubs and hubs becomes less than the discount reduction from dispersion of inter-hubs transportation volumes.

Preliminary Analysis of a Sampling and Transportation System for Leak Detection during Steam Leak Accident of a Pipe in Nuclear Power Plants (원전 내 배관의 증기 누설 사고 시 누설 탐지 포집/이송 시스템 예비 해석)

  • Choi, Dae Kyung;Choi, Choengryul;Kwon, Tae-Soon;Euh, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2020
  • As leakage in nuclear power plants could cause a variety of problems, it is very critical to monitor leakage from the safety point of view. Accordingly, a new type of leak detection system is currently being developed and flow characteristics of the sampling and transportation system are investigated by using numerical analysis as a part of the development process in this study. The results showed that the steam mass fraction varied according to the effect of the gap between the insulation and piping component, transportation velocity, and material properties of porous media during the sampling and transportation process. The results of this study should be useful for understanding flow characteristics of the sampling and transportation system and its design and application.

Mathematical Optimization Models for Determination of Optimal Vertical Alignment (종단선형설계 최적화 기법에 관한 연구)

  • 강성철;전경수;박영부
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 1994
  • In the fields of rail and road design, most vertical alignment design have been thus far heavily dependent upon trial-and-errors of experienced engineers. However, it has long been inefficient in productivity of designing process. In order to overcome this inefficiency, this paper presents the optimal vertical alignment design method using mathematical optimization techniques. For optimization, mathematical model to minimize the construction cost is formulated and the separable programming technique and the Zoutendijk method are introduced to solve it. As result, it is shown that this optimization technique can give efficient solutions to all vertical alignment design fields with properly-estimated cost function.

  • PDF

Vibration Loads on KSR-III during Ground Transportation and Handling (KSR-III 로켓의 도로운송 및 핸들링에 의한 진동하중)

  • Chun, Young-Doo;Cho, Byoung-Gyu;Park, Dong-Soo;Hwang, Seung-Hyun;Kim, Jhoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.250-254
    • /
    • 2002
  • It is conducted to analyze vibration loads on KSR-III(KSR: Korea Sounding Rocket) and its major segments during their ground transportation and various handling process. These loads may be different from the real flight environment. Inadequate assessment of these loads can cause not only local damages on the rocket system but also the critical problem like flight mission failure. Therefore, transportation and handling loads must be considered during design and attenuated to ensure that the rocket structural damage does not occur. This work is concerned with the generation of criteria and prediction of transportation and handling loads for KSR-III. The results show that the shipping container is well designed to satisfy the design requirements. The maximum vibration level recorded during whole transportation and handling for KSR-III is less than 2g, the criteria of KSR-III movement condition.

  • PDF

Effect of Inadequate Design on Cost and Time Overrun of Road Construction Projects in Tanzania

  • Rwakarehe, Eradius E.;Mfinanga, David A.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.1
    • /
    • pp.15-28
    • /
    • 2014
  • Completing road construction projects within the budget and time has been a problem for the Tanzania National Roads Agency (TANROADS); and the major problem highlighted in almost all projects being inadequate design. However, the extent to which inadequate design contributes to both time and cost overruns and its causes remained under-studied. The objective of this study is therefore to determine the extent of the effect of inadequate design, its causes and remedial measures. The methodology used in this study includes reviewing recent projects completion reports, holding roundtable discussions with consultants and TANROADS officials and analyzing the information. Cost and time overruns for the reviewed projects averaged 44% and 26% respectively. Similarly, the extents to which inadequate design contributes to cost and time overruns were on average found to be 61% and 85% respectively. The overruns are predominantly related to problems that occurred during the design process. To alleviate the problem, TANROADS is advised to improve the management of design projects, enhance the process of reviewing design reports, improve the design process including introducing Road Safety Audit and geometric design manuals, and increase staff to match the work-load.