• Title/Summary/Keyword: Transport concentration

Search Result 1,304, Processing Time 0.021 seconds

A Study on the Characteristics of the Atmospheric Environment in Suwon Based on GIS Data and Measured Meteorological Data and Fine Particle Concentrations (GIS 자료와 지상측정 기상·미세먼지 자료에 기반한 수원시 지역의 도시대기환경 특성 연구)

  • Wang, Jang-Woon;Han, Sang-Cheol;Mun, Da-Som;Yang, Minjune;Choi, Seok-Hwan;Kang, Eunha;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1849-1858
    • /
    • 2021
  • We analyzed the monthly and annual trends of the meteorological factors(wind speeds and directions and air temperatures) measured at an automated synoptic observation system (ASOS) and fine particle (PM10 and PM2.5) concentrations measured at the air quality monitoring systems(AQMSs) in Suwon. In addition, we investigated how the fine particle concentrations were related to the meteorological factors as well as urban morphological parameters (fractions of building volume and road area). We calculated the total volume of buildings and the total area of the roads in the area of 2 km × 2 km centered at each AQMS using the geographic information system and environmental geographic information system. The analysis of the meteorological factors showed that the dominant wind directions at the ASOS were westerly and northwesterly and that the average wind speed was strong in Spring. The measured fine particle concentrations were low in Summer and early Autumn (July to September) and high in Spring and Winter. In 2020, the annual mean fine particle concentration was lowest at most AQMSs. The fine particle concentrations were negatively and weakly correlated with the measured wind speeds and air temperatures (the correlation between PM2.5 concentrations and air temperatures was relatively strong). In Suwon city, at least for 6 AQMSs except for the RAQMS 131116 and AQMS 131118, the PM10 concentrations were affected mainly by the transport from outside rather than primary emission from mobile sources or wind speed decrease caused by buildings and, in the case of PM2.5, vise versa.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

The Effects of Hypercapnia and High Flow on Cerebral Metabolism During Cardiopulmonary Bypass (심폐바이패스 시 고탄산분압과 고관류법이 뇌대사에 미치는 영향)

  • 강도균;최석철;윤영철;최국렬;정신현;황윤호;조광현
    • Journal of Chest Surgery
    • /
    • v.36 no.7
    • /
    • pp.472-482
    • /
    • 2003
  • Recent studies have demonstrated that cerebral desaturation during rewarming period of CPB was associated with postoperative neurologic dysfunction. The prevention of cerebral desaturation during CPB may reduce the incidences of neurologic and neuropsychological complications. The present study was prospectively undertaken to compare the clinical effects between two strategies (hypercapnic CPB and high flow CPB) to prevent cerebral desaturation for establishing a proper CPB technique. Material and Method: Thirty-six adult patients scheduled for elective cardiac surgery were randomized into either hypercapnic (Pa$CO_2$ 45~50mmHg, n=18) or high flow group (flow rate 2.75 L/ $m^2$/min and Pa$CO_2$ 35~40mmHg, n=18) during rewarming period of CPB. In each patient, middle cerebral artery blood flow velocity ( $V_{MCA}$), cerebral arteriovenous oxygen content difference (C(a-v) $O_2$), modified cerebral metabolic rate for oxygen (MCMR $O_2$), cerebral oxygen transport rate ( $T_{E}$ $O_2$), incidence of cerebral desaturation (internal jugular bulb blood oxygen saturation $\leq$ 50%), increased rate of S-100 $\beta$ concentration, and arterial and internal jugular bulb blood gas were measured during the five phases of the operation; Pre-CPB, CPB-10 min (steady-state CPB, nasopharyngeal temperature 29~3$0^{\circ}C$), Rewarm-1 (rewarming phase, nasopharyngeal temperature 33$^{\circ}C$), Rewarm-2 (nasopharyngeal temperature 37$^{\circ}C$), and CPB-off. Incidence of postoperative delirium and duration were assessed in all patients. All variables were compared between the two groups. Result: $V_{MCA}$ (157.88$\pm$10.87 vs 120.00$\pm$6.18%, p=0.006), internal jugular bulb $O_2$ saturation (68.01$\pm$2.75 vs 61.28$\pm$2.87%, p=0.03) and $O_2$ tension (41.01$\pm$2.25 vs 32.02$\pm$ 1,67 mmHg, p=0.03), and $T_{E}$ $O_2$(110.84$\pm$7.41 vs 81.15$\pm$8.11%, p=0.003) at rewarming periods were higher in the hypercapnic group than in the high flow group. C(a-v) $O_2$ (4.0$\pm$0.30 vs 4.84$\pm$0.38 mg/dL, p=0.04), COE (0.36$\pm$0.03 vs 0.42$\pm$0.03, p=0.04), increased rate of S- 100$\beta$ (391.67$\pm$23.40 vs 940.0$\pm$17.02%, p=0.003), and incidence of cerebral desaturation (2 vs 4 patients, p=0.04) at rewarming periods, and duration of postoperative delirium (18 vs 34 hr, p=0.02) were low in the hypercapnic group compared to the high flow group. Conclusion: These results indicate that hypercapnic CPB may provide relatively diminished cerebral injury and beneficial effects for cerebral metabolism relatively compared to high flow CPB.low CPB.

Effect of $H_2O_2$ on Alveolar Epithelial Barrier Properties (폐상피세포 장벽에 대한 $H_2O_2$의 영향)

  • Suh, Duk-Joon;Cho, Se-Heon;Kang, Chang-Woon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.236-249
    • /
    • 1993
  • Background: Among the injurious agents to which the lung airspaces are constantly exposed are reactive species of oxygen. It has been widely believed that reactive oxygen species may be implicated in the etiology of lung injuries. In order to elucidated how this oxidant causes lung cell injury, we investigated the effects of exogenous $H_2O_2$ on alveolar epithelial barrier characteristics. Methods: Rat type II alveolar epithelial cells were plated onto tissue culture-treated polycarbonate membrane filters. The resulting confluent monolayers on days 3 and 4 were mounted in a modified Ussing chamber and bathed on both sides with HEPES-buffered Ringer solution. The changes in short-circuit current (Isc) and monolayer resistance (R) in response to the exogenous hydroperoxide were measured. To determine the degree of cellular catalase participation in protection against $H_2O_2$ injury to the barrier, experiments were repeated in the presence of 20 mM aminotriazole (ATAZ, an inhibitor of catalase) in the same bathing fluid as the hydroperoxide. Results: These monolayers have a high transepithelial resistance (>2000 ohm-$cm^2$) and actively transport $Na^+$ from apical fluid. $H_2O_2$(0-100 mM) was then delivered to either apical or basolateral fluid. Resulting indicated that $H_2O_2$ decreased Isc and R gradually in dose-dependent manner. The effective concentration of apical $H_2O_2$ at which Isc (or R) was decreased by 50% at one hour ($ED_{50}$) was about 4 mM. However, basolateral $H_2O_2$ exposure led to $ED_{50}$ for Isc (and R) of about 0.04 mM. Inhibition of cellular catalase yielded $ED_{50}$ for Isc (and R) of about 0.4 mM when $H_2O_2$ was given apically, while $ED_{50}$ for basolateral exposure to $H_2O_2$ did not change in the presence of ATAZ. The rate of $H_2O_2$ consumption in apical and basolateral bathing fluids was the same, while cellualr catalase activity rose gradually with time in culture. Conclusion: Our data suggest that basolateral $H_2O_2$ may affect directly membrane component (e.g., $Na^+,\;K^+$-ATPase) located on the basolateral cell surface. Apical $H_2O_2$, on the other hand, may be largely degraded by catalase as it passes through the cells before reaching these membrane components. We conclude that alveolar epithelial barrier integrity as measured by Isc and R are compromised by $H_2O_2$ being relatively sensitive to basolateral (and insensitive to apical) $H_2O_2$.

  • PDF