• Title/Summary/Keyword: Transport Shock

Search Result 103, Processing Time 0.027 seconds

Study of a Searchlight Lens to Improve Optical Performance and Fabricability (광학 성능 및 제작성 향상을 위한 탐조등 렌즈 연구)

  • Jo, Ye-Ji;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • This study examines the design technology of searchlight optics featuring narrow beam angles and high luminous intensities. Halogen and xenon lamps, which are conventional searchlight sources, are vulnerable to vibration and shock, and are large and heavy, making them difficult to transport. In addition, the parabolic mirror located at the rear of the searchlight has the disadvantages of poor performance and low light efficiency, due to the assembly error produced during manufacturing. To solve this problem, a 1-kW halogen lamp is replaced by a 150-W high-power COB LED, and a high-efficiency TIR lens is designed to meet the target performance. Afterward, the TIR lens array is proposed to solve the surface error generated during optical injection. After a prototype is manufactured based on the designed optical system, the optical performance is confirmed to be excellent, by comparing it to that of a commercial halogen-lamp searchlight.

Improvement of Methanogenic activity in the Anaerobic Treatment of Wastewater with High Sulfate (고농도 황산염을 함유한 폐수의 혐기성 처리시 메탄균의 효율 향상을 위한 연구)

  • Shin, Hang Sik;Oh, Sae Eun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.47-54
    • /
    • 1996
  • UASB reactor was operated for treating wastewater containing high sulfate to assess their performance, competition between sulfate-reducing bacteria(SRB) and methane-producing bacteria(MPB), and the change in the characteristics of microbial granules according to change of hydraulic retention time(HRT) in the reactor. The reactor was fed with a synthetic moderate strength wastes(glucose, 2000 mgCOD/l) containing high sulfate($2400mgSO_4{^{2-}}/l$). The organic loading rate(OLR) ranged from 1.5 to 3.0 gCOD/l.d as HRT maintained 15 to 30 hrs in the stage I. The COD removal efficiency was between 80 to 92%. During this period, methane yield rapidly decreased from 0.3 to 0.1 1 $CH_4$/gCODremoved. While sulfide concentration in the effluent increased from 80 to 200 mgS/l. This indicates that SRB becomes dominant over MPB at a relatively long HRT in the excess sulfate. When OLR of reactor maintained from 5 to 8 gCOD/l.d in the stage II, methane yield increased from 0.1 to 0.17 1 $CH_4$/gCODremoved regardless of decrease of COD removal efficiency. This indicates that SRB is more sensitive to the change of a short HRT than MPB. In the competition between SRB and MPB, about 30% of the removed COD was utilized by SRB at HRT of 30 hrs during the start-up period, while about 73% was used by SRB at HRT of 15hrs at the final step of second experimental stage. Whereas after shock exposure of OLR about 62% was utilized by SRB at HRT of 5hrs. It indicates that SRB is strongly suppressed by the wash-out of significant dispersed SRB since a large electron flow is distributed to the MPB. In addition, the granulation in the presence of high sulfate is unfavoured at a long HRT because of substrate transport limitations into MPB like Methanothrix spp. which is an important factor in the composition of the granules. Accordingly, granule sizes in the UASB reactor decreased with time due to weak network frame of granules by the decreased activity of MPB.

  • PDF

Regulation of Intracellular pH by SHC1 in Saccharomyces cerevisiae (효모에서 SHC1 유전자의 이온 농도 조절에 의한 세포내 pH 항상성 유지)

  • 하승길;전준철;최의열
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.168-172
    • /
    • 2002
  • Budding yeasts maintain an effective system to regulate intracellular pH in response to environmental pH fluctuation. In a previous study we reported that SHC1 plays a role in cell growth at alkaline condition, not at acid pH. We constructed a null mutant deleted an entire open reading frame for SHC1. To test whether the retardation in cell growth was caused by the absence of intracellular pH buffering capacity, we measured intracellular pH with a pH-sensitive fluorescent dye, C.SNARE. The intracellular pH of the mutant cell was much higher than that of wild-type cells, indicating that the mutant cells lack some types of buffering capacity. We also investigated the level of $Na^+ and K^+$ content with atomic mass spectroscopy after alkali shock. Wild-type cell showed a higher level of intracellular K^+$ content, whereas there was no difference in $Na^+$ level. The result suggested that K^+$ is more important in the regulation of intracellular pH in yeasts.

Effect of Vibration during Distribution Process on Compression Strength of Corrugated Fiberboard Boxes for Agricultural Products Packaging (농산물 포장용 골판지상자의 수송 중 진동에 의한 압축강도 변화)

  • Shin, Joon Sub;Kim, Jongkyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 2021
  • Agricultural corrugated fiberboard packaging boxes frequently experience damage due to loading and unloading, vibration during transport, and shock by dynamic distribution condition change. This study was carried out to estimate effect of vibration during distribution process on compression strength of corrugated fiberboard boxes for agricultural products. In order to identify the degradation caused by vibration, after box packaging the agricultural products(tangerine or cucumber), the natural frequencies of the packaging boxes were measured by varying the relative humidity(50, 70 and 90%) at 25℃ temperature. Various types of corrugated fiberboard boxes were packed with tangerines and cucumbers, and the PSD plot vibration tests were conducted by utilizing the actual vibration recording results of the Gyeongbu Expressway section between Seoul and Gimcheon. As a result of the experiment, the decrease in compression strength of the box was relatively low in DW-AB, and the decrease in compression strength of the SW-A 0201(RSC) type box was the highest at 20.49%. In particular, both SW-A and DW-AB showed low compression strength degradation rates for open folder type boxes. The moisture content varies depending on the type of the box or agricultural products, and the enclosed 0201(RSC) type box was generally higher than the open folder or bliss type box, which is believed to be the reason for the decrease in compression strength of RSC type box due to humidity. By the agricultural product, the percentage of decrease in compression strength of box packed with cucumbers was especially high.

Development of a New Munk-type Breaker Height Formula Using Machine Learning (머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안)

  • Choi, Byung-Jong;Nam, Hyung-Sik;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.165-172
    • /
    • 2021
  • Breaking wave is one of the important design factors in the design of coastal and port structures as they are directly related to various physical phenomena occurring on the coast, such as onshore currents, sediment transport, shock wave pressure, and energy dissipation. Due to the inherent complexity of the breaking wave, many empirical formulas have been proposed to predict breaker indices such as wave breaking height and breaking depth using hydraulic models. However, the existing empirical equations for breaker indices mainly were proposed via statistical analysis of experimental data under the assumption of a specific equation. In this study, a new Munk-type empirical equation was proposed to predict the height of breaking waves based on a representative linear supervised machine learning technique with high predictive performance in various research fields related to regression or classification challenges. Although the newly proposed breaker height formula was a simple polynomial equation, its predictive performance was comparable to that of the currently available empirical formula.

Characterizing Human Behavior in Emergency Situations (비상상황에서의 인간 행동 특성화 연구)

  • Lee, Jun;Yook, Donghyung
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.495-506
    • /
    • 2022
  • Purpose: When a serious disaster occurred in East Japan on March 11, 2011, some evacuees in shock failed to avoid danger to the best of their ability. Why did they hesitate and waste their time? And why didn't they choose correct escaping routes? This study attempts to classify human behavior through psychological point of view and cognitive science and to interpret behavioral patterns based on animal behaviors from the field of biology. Method: This study first conceptually categorized walking behavior into intellectualization, automaticity and instinct based on the existing literature and matched these with empirical data. Result: The actual walking patterns observed failed to be compatible with these categories and consequently, this study suggests the following five categories: normal, busy, fast & straight, freezing and tizzy. This new classification of walking behavior is based on speed, variation of speed and change of direction. Conclusion: The method used in this study and the results can be applied to simulations of walking behavior and analysis of behavior in emergency situations.

Structural resemblance of the DNAJA-family protein, Tid1, to the DNAJB-family Hsp40

  • Jang, Jinhwa;Lee, Sung-Hee;Kang, Dong-Hoon;Sim, Dae-Won;Ryu, Kyung-Suk;Jo, Ku-Sung;Lee, Jinhyuk;Ryu, Hyojung;Kim, Eun-Hee;Won, Hyung-Sik;Kim, Ji-Hun
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.488-493
    • /
    • 2022
  • The specific pair of heat shock protein 70 (Hsp70) and Hsp40 constitutes an essential molecular chaperone system involved in numerous cellular processes, including the proper folding/refolding and transport of proteins. Hsp40 family members are characterized by the presence of a conserved J-domain (JD) that functions as a co-chaperone of Hsp70. Tumorous imaginal disc 1 (Tid1) is a tumor suppressor protein belonging to the DNAJA3 subfamily of Hsp40 and functions as a co-chaperone of the mitochondrial Hsp70, mortalin. In this work, we performed nuclear magnetic resonance spectroscopy to determine the solution structure of JD and its interaction with the glycine/phenylalanine-rich region (GF-motif) of human Tid1. Notably, Tid1-JD, whose conformation was consistent with that of the DNAJB1 JD, appeared to stably interact with its subsequent GF-motif region. Collectively with our sequence analysis, the present results demonstrate that the functional and regulatory mode of Tid1 resembles that of the DNAJB1 subfamily members rather than DNAJA1 or DNAJA2 subfamily proteins. Therefore, it is suggested that an allosteric interaction between mortalin and Tid1 is involved in the mitochondrial Hsp70/Hsp40 chaperone system.

Design and Fabrication of an LPVT Embedded in a GIS Spacer (GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작)

  • Seung-Gwan Park;Gyeong-Yeol Lee;Nam-Hoon Kim;Cheol-Hwan Kim;Gyung-Suk Kil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

Assessment of Phytoplankton Viability Along the Salinity Gradient in Seomjin River Estuary, Korea (섬진강 하구역에서 염분구배에 따른 식물플랑크톤 활성도 평가)

  • Lim, Youngkyun;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.513-523
    • /
    • 2017
  • We evaluated the viability of phytoplankton along the salinity gradient in the flood and ebb tides of spring tide of February and the ebb tide of neap tide of March 2017 in the Seomjin River Estuary. Additional laboratory experiments were also conducted to determine the reason of the pH changes along the salinity gradient using the field natural sample in February. In field, saltwater was well mixed at downstream vertically and the salinity gradient was horizontally appeared toward upstream of freshwater zone. There were strong negative correlations between salinity and nutrient (nitrate + nitrite R=0.99, p<0.001, and silicate R=0.98, p<0.001), implying that those two nutrients of freshwater origin were gradually diluted with mixing the saltwater. On the other hands, relatively high phosphate concentration was kept in the stations of saltwater over 15 psu, indicating that it was caused by resuspended sediments of Gwangyang Bay and downstream by tidal water mixing.Among phytoplankton community structure in winter, Eucampia zodiacus have occupied to be c.a. 70 % in the most stations. Based on the field survey results for survivability of phytoplankton by phytoPAM instrument, there was positive correlations between salinity and chlorophyll a (R=0.82, p<0.001) and, salinity and active chlorophyll a (R=0.80, p<0.001), implying that the dominant marine diatom species may have significantly damaged in low salinity conditions of upstream. Also, maximum mortality rate of phytoplankton caused by low salinity shock was appered to be 75% in the upstream station. In particular, the pH in spring tides of February had tended to increase with high phytoplankton accmulated stations, suggesting that it was related with absorption of $CO_2$ by the photosynthesis of dominant diatom. In laboratory experiments, phytoplankton mass-mortality caused by low salinity shock was also occurred, which is confirmed with reducing the photosynthetic electron transport activity. Following the phytoplankton mass-mortality, bacteria abundance was significantly increased in 24 hours. As a result, the mass-proliferating bacteria can produce the $CO_2$ in the process of biodegradation of diatoms, which can lead to pH decrease. Therefore, marine phytoplankton species was greatly damaged in freshwater mixing area, depending on along the salinity gradient that was considered to be an important role in elevating and reducing of pH in Seomjin River Estuary.

Triptolide Mimics the Effect of Dietary Restriction on Lifespan and Retards Age-related Diseases in Caenorhabditis elegans (트립톨라이드가 식이제한에 의한 수명연장과 노화관련 질환에 미치는 영향)

  • Beak, Sun-Mi;Park, Sang-Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.931-937
    • /
    • 2018
  • Triptolide is a compound found in Tripterygium wilfordii and reported to have an anti-inflammatory and anti-oxidant activities. A previous study shows that the dietary supplementation with triptolide increases resistance to environmental stressors, including oxidative stress, heat shock, and ultraviolet irradiation, and extends lifespan in C. elegans. Here, we investigated the underlying mechanisms involved in the lifespan-extending effect of triptolide. The effect of triptolide on age-related diseases, such as diabetes mellitus and Alzheimer's disease, was also examined using animal disease models. The longevity phenotype conferred by triptolide was not observed in the eat-2 mutant, a well-known genetic model of dietary restriction, while there was an additional lifespan extension with triptolide in age-1 and clk-1 mutants. The long lifespan of age-1 mutant is resulted from a reduced insulin/IGF-1-like signaling and the clk-1 mutant lives longer than wild-type due to dysfunction of mitochondrial electron transport chain reaction. The effect of dietary restriction using bacterial dilution on lifespan also overlapped with that of triptolide. The toxicity of high glucose diet or transgenic human amyloid beta gene was significantly suppressed by the supplementation with triptolide. These findings suggest that triptolide can mimic the effect of dietary restriction on lifespan and onset of age-related diseases. We conclude that triptolide can be a strong candidate for the development of dietary restriction mimetics.