Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.8.931

Triptolide Mimics the Effect of Dietary Restriction on Lifespan and Retards Age-related Diseases in Caenorhabditis elegans  

Beak, Sun-Mi (Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University)
Park, Sang-Kyu (Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University)
Publication Information
Journal of Life Science / v.28, no.8, 2018 , pp. 931-937 More about this Journal
Abstract
Triptolide is a compound found in Tripterygium wilfordii and reported to have an anti-inflammatory and anti-oxidant activities. A previous study shows that the dietary supplementation with triptolide increases resistance to environmental stressors, including oxidative stress, heat shock, and ultraviolet irradiation, and extends lifespan in C. elegans. Here, we investigated the underlying mechanisms involved in the lifespan-extending effect of triptolide. The effect of triptolide on age-related diseases, such as diabetes mellitus and Alzheimer's disease, was also examined using animal disease models. The longevity phenotype conferred by triptolide was not observed in the eat-2 mutant, a well-known genetic model of dietary restriction, while there was an additional lifespan extension with triptolide in age-1 and clk-1 mutants. The long lifespan of age-1 mutant is resulted from a reduced insulin/IGF-1-like signaling and the clk-1 mutant lives longer than wild-type due to dysfunction of mitochondrial electron transport chain reaction. The effect of dietary restriction using bacterial dilution on lifespan also overlapped with that of triptolide. The toxicity of high glucose diet or transgenic human amyloid beta gene was significantly suppressed by the supplementation with triptolide. These findings suggest that triptolide can mimic the effect of dietary restriction on lifespan and onset of age-related diseases. We conclude that triptolide can be a strong candidate for the development of dietary restriction mimetics.
Keywords
Alzheimer's disease; C. elegans; diabetes mellitus; dietary restriction; triptolide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., Otsubo, K., Morisawa, S. and Katakura, Y. 1997. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem. Biophys. Res. Commun. 234, 269-274.   DOI
2 Soh, J. W., Marowsky, N., Nichols, T. J., Rahman, A. M., Miah, T., Sarao, P., Khasawneh, R., Unnikrishnan, A., Heydari, A. R., Silver, R. B. and Arking, R. 2013. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp. Gerontol. 48, 229-239.   DOI
3 Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M. and Sinclair, D. 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689.   DOI
4 Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B. and Sinclair, D. A. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.   DOI
5 Hu, G., Gong, X., Wang, L., Liu, M., Liu, Y., Fu, X., Wang, W., Zhang, T. and Wang, X. 2016. Triptolide promotes the clearance of alpha-synuclein by enhancing autophagy in neuronal cells. Mol. Neurobiol. 54, 2361-2372.
6 Keowkase, R., Aboukhatwa, M. and Luo, Y. 2010. Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology 59, 358-365.   DOI
7 Kim, J. S. and Park, S. K. 2017. Supplementation of S-allyl cysteine improves health span in Caenorhabditis elegans. Biosci. J. 33, 411-421.
8 Kim, S. J., Beak, S. M. and Park, S. K. 2017. Supplementation with triptolide increases resistance to environmental stressors and lifespan in C. elegans. J. Food Sci. 82, 1484-1490.   DOI
9 Kupchan, S. M., Court, W. A., Dailey, R. G., Jr., Gilmore, C. J. and Bryan, R. F. 1972. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J. Am. Chem. Soc. 94, 7194-7195.   DOI
10 Zhao, F., Huang, W., Zhang, Z., Mao, L., Han, Y., Yan, J. and Lei, M. 2016. Triptolide induces protective autophagy through activation of the CaMKKbeta-AMPK signaling pathway in prostate cancer cells. Oncotarget 7, 5366-5382.
11 Ziaei, S. and Halaby, R. 2016. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J. Phytomed. 6, 149-164.
12 Oh, S. I., Park, J. K. and Park, S. K. 2015. Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans. Clinics (Sao Paulo) 70, 380-386.   DOI
13 Lee, C. K., Allison, D. B., Brand, J., Weindruch, R. and Prolla, T. A. 2002. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc. Natl. Acad. Sci. USA. 99, 14988-14993.   DOI
14 Lee, C. K., Klopp, R. G., Weindruch, R. and Prolla, T. A. 1999. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390-1393.   DOI
15 Lee, J. S., Park, S. K. and Park, S. K. 2016. Electrolyzed-reduced water mitigates myloid beta toxicity via DAF-16 in C. elegans. Toxicol. Environ. Health Sci. 8, 56-61.   DOI
16 Mair, W. and Dillin, A. 2008. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727-754.   DOI
17 McKiernan, S. H., Bua, E., McGorray, J. and Aiken, J. 2004. Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle. FASEB J. 18, 580-581.   DOI
18 Oh, S. I. and Park, S. K. 2017. N-acetyl-L-cysteine mimics the effect of dietary restriction on lifespan and reduces amyloid beta-induced toxicity in Caenorhabditis elegans. Food Sci. Biotechnol. 26, 783-790.   DOI
19 Onken, B. and Driscoll, M. 2010. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758.   DOI
20 Osborne, T. B., Mendel, L. B. and Ferry, E. L. 1917. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294-295.   DOI
21 Park, S. K., Link, C. D. and Johnson, T. E. 2010. Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24, 383-392.   DOI
22 Park, S. K. and Park, S. K. 2013. Electrolyzed-reduced water increases resistance to oxidative stress, fertility, and lifespan via insulin/IGF-1-like signal in C. elegans. Biol. Res. 46, 147-152.   DOI
23 Shintani, T., Sakoguchi, H., Yoshihara, A., Izumori, K. and Sato, M. 2017. d-Allulose, a stereoisomer of d-fructose, extends Caenorhabditis elegans lifespan through a dietary restriction mechanism: A new candidate dietary restriction mimetic. Biochem. Biophys. Res. Commun. 493, 1528-1533.   DOI
24 Peto, R. and Peto, J. 1972. Asymptotically efficient rank invariant test procedures. J. R. Statist. Soc. A 135, 185-207.   DOI
25 Rangaraju, S., Solis, G. M., Andersson, S. I., Gomez-Amaro, R. L., Kardakaris, R., Broaddus, C. D., Niculescu, A. B. and Petrascheck, M. 2015. Atypical antidepressants extend lifespan of Caenorhabditis elegans by activation of a non-cell-autonomous stress response. Aging Cell 14, 971-981.   DOI
26 Schlernitzauer, A., Oiry, C., Hamad, R., Galas, S., Cortade, F., Chabi, B., Casas, F., Pessemesse, L., Fouret, G., Feillet-Coudray, C., Cros, G., Cabello, G., Magous, R. and Wrutniak-Cabello, C. 2013. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS One 8, e78788.   DOI
27 Schlotterer, A., Kukudov, G., Bozorgmehr, F., Hutter, H., Du, X., Oikonomou, D., Ibrahim, Y., Pfisterer, F., Rabbani, N., Thornalley, P., Sayed, A., Fleming, T., Humpert, P., Schwenger, V., Zeier, M., Hamann, A., Stern, D., Brownlee, M., Bierhaus, A., Nawroth, P. and Morcos, M. 2009. C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58, 2450-2456.   DOI
28 Shigenaga, M. K., Hagen, T. M. and Ames, B. N. 1994. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA. 91, 10771-10778.   DOI
29 Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J. and Partridge, L. 2002. Dietary restriction in long-lived dwarf flies. Science 296, 319.   DOI
30 Barger, J. L., Walford, R. L. and Weindruch, R. 2003. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp. Gerontol. 38, 1343-1351.   DOI
31 Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W. and Weindruch, R. 2009. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201-204.
32 Fossel, M. 1998. Telomerase and the aging cell: implications for human health. JAMA. 279, 1732-1735.   DOI
33 Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M. and Mattson, M. P. 2007. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 26, 212-220.   DOI
34 Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300.   DOI
35 Houthoofd, K., Johnson, T. E. and Vanfleteren, J. R. 2005. Dietary restriction in the nematode Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1125-1131.   DOI