• Title/Summary/Keyword: Transparent thin film

Search Result 715, Processing Time 0.037 seconds

The Deposition and Properties of Surface Textured ZnO:Al Films (표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

The fabrication and properties of surface textured ZnO:Al films (Surface Textured ZnO:Al 투명전도막 제작 및 특성)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Effects of an Aluminum Contact on the Carrier Mobility and Threshold Voltage of Zinc Tin Oxide Transparent Thin Film Transistors

  • Ma, Tae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.609-614
    • /
    • 2014
  • We fabricated amorphous zinc tin oxide (ZTO) transparent thin-film transistors (TTFTs). The effects of Al electrode on the mobility and threshold voltage of the ZTO TTFTs were investigated. It was found that the aluminum (Al)-ZTO contact decreased the mobility and increased the threshold voltage. Traps, originating from $AlO_x$, were assumed to be the cause of degradation. An indium tin oxide film was inserted between Al and ZTO as a buffer layer, forming an ohmic contact, which was revealed to improve the performance of ZTO TTFTs.

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials (비정질 산화물 반도체의 열전특성)

  • Kim, Seo-Han;Park, Cheol-Hong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application (자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구)

  • Yoon, Jong-Ho;Kim, Seok-Ge;Song, Jong-Wha;Lee, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

Fabrication and characteristics of ITO thin films on CR39 substrate for transparent OTFT

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2007
  • The indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. The ITO thin films deposited at room temperature because CR39 substrate its glass-transition temperature is $130^{\circ}C$. The ITO thin films used bottom and top electrode and for organic thin film transparent transistors (OTFTs). The ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300-800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of the ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300-800 nm) measured without post annealing process and a low resistivity value $9.83{\times}10^{-4}{\Omega}cm$ was measured thickness of 300 nm. All fabrication process of ITO thin films did not exceed $80^{\circ}C$.

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an installation angle (건물일체형 투광성 PV모듈의 설치각도별 발전특성에 관한 연구)

  • Song, Jong-Hwa;Yoon, Jong-Ho;An, Young-Sub;Kim, Seok-Ge;Lee, Sung-Jin;Choung, Youn-Kyoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The experiment results showed power outputs of transparent thin-film PV module applied to full-scale mock up model on slope of $90^{\circ},\;30^{\circ},\;0^{\circ}$ to the south. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result. the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$ with respect to the inclined slope of the module, Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth, Specipically. the varying power output with incidence angle of PV module can be resulted from the influence of incidence angle modifier of glass on PV module. That is, the solar energy transmission can be reduced as an increase of incidence angle of PV module. Therefore, when the inclined slope of the PV module was over $70^{\circ}$ there was a significant reduction of power output, and this was caused by the decrease of solar energy transmission in the transparent thin-film PV module.