• Title/Summary/Keyword: Transparent oxide semiconductor

Search Result 138, Processing Time 0.035 seconds

Transparent-Oxide-Semiconductor Based Staggered Self-Alignment Thin-Film Transistors

  • Yamagishi, Akira;Naka, Shigeki;Okada, Hiroyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1105-1106
    • /
    • 2008
  • Staggered type self-aligned transparent-oxide-semiconductor transistors with indium-zinc-oxide as a semiconductor have studied. In this device fabrication, successive sputtering of oxide semiconductor and insulator without breaking of vacuum and without exposing in air, humidity and oxygen can be realized because oxide semiconductor is transparent. As a result of fabrication, transistor characteristics with mobility of $30cm^2/Vs$ and on-off ratio of $10^5$ could be obtained for the newly developed self-alignment device structure.

  • PDF

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

Growth and Properties of p-type Transparent Oxide Semiconductors

  • Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.99-99
    • /
    • 2014
  • Transparent oxide semiconductors (TOSs) are. currently attracting attention for application to transparent electrodes in optoelectronic devices and active channel layers in thin-film transistors. One of the key issues for the realization of next generation transparent electronic devices such as transparent complementary metal-oxide-semiconductor thin-film transistors (CMOS TFTs), transparent wall light, sensors, and transparent solar cell is to develop p-type TOSs. In this talks, I will introduce issues and status related to p-type TOSs such as LnCuOQ (Ln=lanthanide, Q=S, Se), $SrCu_2O_2$, $CuMO_2$ (M=Al, Ga, Cr, In), ZnO, $Cu_2O$ and SnO. The growth and properties of SnO and Cu-based oxides and their application to electronic devices will be discussed.

  • PDF

Selective Laser Direct Patterning of Indium Tin Oxide on Transparent Oxide Semiconductor Thin Films

  • Lee, Haechang;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.6-11
    • /
    • 2019
  • For a wider application of laser direct patterning, selective laser ablation of indium tin oxide (ITO) film on transparent oxide semiconductor (TOS) thin film was carried out using a diode-pumped Q-switched Nd:YVO4 laser at a wavelength of 1064 nm. In case of the laser ablation of ITO on indium gallium zinc oxide (IGZO) film, both of ITO and IGZO films were fully etched for all the conditions of the laser beams even though IGZO monolayer was not ablated at the same laser beam condition. On the contrary, in case of the laser ablation of ITO on zinc oxide (ZnO) film, it was possible to etch ITO selectively with a slight damage on ZnO layer. The selective laser ablation is expected to be due to the different coefficient of thermal expansion (CTE) between ITO and ZnO.

Oxide/Organic Hybrid TFTs for Flexible Devices

  • Yang, Shin-Hyuk;Cho, Doo-Hee;KoPark, Sang-Hee;Lee, Jeong-Ik;Cheong, Woo-Seok;Yoon, Sung-Min;Ryu, Min-Ki;Byun, Chun-Won;Kwon, Oh-Sang;Cho, Kyoung-Ik;Chu, Hye-Yong;Hwang, Chi-Sun;Ahn, Taek;Choi, Yoo-Jeong;Yi, Mi-Hye;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.393-395
    • /
    • 2009
  • We fabricated oxide and oxide/organic hybrid TFTs on a glass substrate using the photolithography process under $200^{\circ}C$. We adopt the solution processed organic ferroelectric materials of P(VDF-TrFE) and polyimide (KSPI) insulator for 1-T structure memory and flexible device, respectively. All devices have successfully operated and showed the possibility of hybrid TFTs for the application to the flexible electronic devices.

  • PDF

Approach to High Stable Oxide Thin-Film Transistors for Transparent Active Matrix Organic Light Emitting Devices

  • Cheong, Woo-Seok;Lee, Jeong-Min;Jeong, Jae-Kyeong;KoPark, Sang-Hee;Yoon, Sung-Min;Cho, Doo-Hee;Ryu, Min-Ki;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.382-384
    • /
    • 2009
  • In this study, high stable oxide thin-film transistors (TFTs) have been developed by using several approaching techniques, which including a change of the channel composition ratio in multi-component oxide semiconductors, a change of TFT structure with interfacial dielectric layers, a control of interface roughness, a channel-doping method, and so on.

  • PDF

Graphene field-effect transistor for radio-frequency applications : review

  • Moon, Jeong-Sun
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Currently, graphene is a topic of very active research in fields from science to potential applications. For various radio-frequency (RF) circuit applications including low-noise amplifiers, the unique ambipolar nature of graphene field-effect transistors can be utilized for high-performance frequency multipliers, mixers and high-speed radiometers. Potential integration of graphene on Silicon substrates with complementary metal-oxide-semiconductor compatibility would also benefit future RF systems. The future success of the RF circuit applications depends on vertical and lateral scaling of graphene metal-oxide-semiconductor field-effect transistors to minimize parasitics and improve gate modulation efficiency in the channel. In this paper, we highlight recent progress in graphene materials, devices, and circuits for RF applications. For passive RF applications, we show its transparent electromagnetic shielding in Ku-band and transparent antenna, where its success depends on quality of materials. We also attempt to discuss future applications and challenges of graphene.