• 제목/요약/키워드: Transparent conductive films

검색결과 307건 처리시간 0.027초

Effects of Substrate Temperature on Properties of Sb-doped SnO2 Thin Film

  • Do Kyung, Lee;Young-Soo, Sohn
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.371-375
    • /
    • 2022
  • Antimony-doped tin oxide (ATO) thin films, one type of transparent conductive oxide (TCO) films, were prepared on a SiO2-coated glass substrate with different substrate temperatures by a radio-frequency magnetron sputtering system. Structural, optical, and electrical characteristics of the deposited ATO films were analyzed using X-ray diffraction, scanning electron microscopy, alpha-step, ultraviolet-visible spectrometer, and Hall effect measurement. The substrate temperature during deposition did not affect the basic crystal structure of the films but changed the grain size and film thickness. The optical transmittance of the ATO films deposited at different substrate temperatures was over 70%. The lowest sheet resistance and resistivity were 8.43 × 102 Ω/sq, and 0.3991 × 10-2 Ω·cm, respectively, and the highest carrier concentration and mobility were 2.36 × 1021 cm-3 and 6.627 × 10-2 cm2V-1s-1, respectively, at a substrate temperature of 400 ℃.

투명전극 응용을 위한 ZnO박막과 Ga 도핑 된 ZnO박막의 성장 후 열처리에 따른 특성분석 (Characterization of ZnO Thin Films and Ga doped ZnO Thin Films Post Annealing for Transparent Conducting Oxide Application)

  • 장재호;배효준;이지수;정광현;최현광;전민현
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.567-571
    • /
    • 2009
  • Polycrystalline ZnO and Ga doped ZnO (GZO) films are deposited on glass substrate by RF magnetron sputtering at room temperature. The characteristics of ZnO and GZO films are investigated with X-ray diffraction measurement, UV-VIS-NIR spectrophotometer $(250{\sim}1200nm)$ and hall measurement. The post-growth thermal treatment of these films is carried out in N2 ambient at $500^{\circ}C$ for 30 min and an hour. ZnO and GZO films have different changing behavior of structural and optical properties by annealing. To use transparent conductive films for solar cell, films should have not only high transmittance but also good electrical property. Although as deposited GZO films have electrical properties than ZnO films, GZO films have not good transmittance properties. Consequently, we succeed that the high transmittance of GZO films is improved by annealing process.

Inkjet-print patterned transparent conductive CNT films

  • Kim, Mun-Ja;Shin, Jun-Ho;Lee, Jong-Hak;Lee, Hyun-Chul;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1119-1121
    • /
    • 2006
  • Using a chemical radical we modified the surface property of PET substrates. The chemically treated substrate surface improved dispersion of CNTs on substrate and provides suitable adhesion of CNTs to substrate. In addition, an ink-jet printed patterning technique effectively improved the transparency of transparent conductive CNT composite films.

  • PDF

기판바이어스와 수소열처리에 의한 AZO 투명전도막의 전기적 특성 (Electrical properties of AZO transparent conductive oxide with substrate bias and $H_2$ annealing)

  • 정윤환;안정근;최대섭;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.331-331
    • /
    • 2008
  • Transparent conductive oxide (TCO) are necessary as front electrode or anti-reflecting coating for increasing efficiency of LED and Photodiode. In this paper, aluminum-doped Zinc oxide films(AZO) were prepared by RF magnetron sputtering on Si substrate at room temperature with application of substrate bias from -60 to 60 V. Then annealed at temperature of 200, 300 and $400^{\circ}C$ for 1hr in $H_2$ ambient. Structural and electrical property of AZO thin films were investigated.

  • PDF

투명전도성 박막의 활용을 위한 스퍼터링 증착 기술과 전망 (Sputtering Technology and Prospect for Transparent Conductive Thin Film)

  • 김상모;김경환
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.109-124
    • /
    • 2023
  • For decades, sputtering as a physical vapor deposition (PVD) method has been a widely used technique for film coating processes. The sputtering enables oxides, metals, alloys, nitrides, etc to be deposited on a wide variety of substrates from silicon wafers to polymer substrates. Meanwhile, transparent conductive oxides (TCOs) have played important roles as electrodes in electrical applications such as displays, sensors, solar cells, and thin-film transistors. TCO films fabricated through a sputtering process have a higher quality leading to an improved device performance than other films prepared with other methods. In this review, we discuss the mechanism of sputtering deposition and detail the TCO materials. Related technologies (processing conditions, materials, and applications) are introduced for electrical applications.

ELECTROSPINNING OF ANTIMONY DOPED TIN OXIDE NANOPARTICLE DISPERSION FOR TRANSPARENT AND CONDUCTIVE FILMS

  • YOUNG-SANG CHO;MINHO HAN;SEUNG HEE WOO
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1345-1350
    • /
    • 2020
  • Stable dispersion of antimony-doped tin oxide nano-powder was prepared by wet attrition process by comminuting aggregated ATO nano-powder using the titanate coupling agent as a dispersant to form the chemisorbed layer on the particle surface. The feed solution of the ATO dispersion and PVP was prepared for electro-spun fibers on the glass substrate. The surface resistance of the fibrous ATO film after electrospinning for 30 minutes was in the order of 105 Ω/□, which is sufficient for anti-static coating. The optical transmittance of ATO fibers was confirmed by measuring the visible light transmittance.

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작 (Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting)

  • 유종수;유세민;곽선우;김정수
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.