• Title/Summary/Keyword: Transparent ZnO

Search Result 556, Processing Time 0.033 seconds

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers (플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Choo, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

Thickness-dependent morphology of ZnO films and amorphous ZnO Transparent TFT

  • Hsieh, Hsing-Hung;Wu, Chung-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1677-1679
    • /
    • 2007
  • Thickness dependent morphology of ZnO films was studied, and ZnO can be intentionally grown into amorphous phase by reducing the thickness. The top-gate amorphous ZnO TTFTs with rather high field-effect mobilities and on/off current ratios were effectively fabricated.

  • PDF

Thin Film Transistor with Transparent ZnO as active channel layer (투명 ZnO를 활성 채널층으로 하는 박막 트랜지스터)

  • Shin Paik-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • Transparent ZnO thin films were prepared by KrF pulsed laser deposition (PLD) technique and applied to a bottom-gate type thin film transistor device as an active channel layer. A high conductive crystalline Si substrate was used as an metal-like bottom gate and SiN insulating layer was then deposited by LPCVD(low pressure chemical vapour deposition). An aluminum layer was then vacuum evaporated and patterned to form a source/drain metal contact. Oxygen partial pressure and substrate temperature were varied during the ZnO PLD deposition process and their influence on the thin film properties were investigated by X-ray diffraction(XRD) and Hall-van der Pauw method. Optical transparency of the ZnO thin film was analyzed by UV-visible phometer. The resulting ZnO-TFT devices showed an on-off ration of $10^6$ and field effect mobility of 2.4-6.1 $cm^2/V{\cdot}s$.

AZO-Embedded Transparent Cu Oxide Photodetector (AZO 기반의 투명 Cu Oxide 광검출기)

  • Lee, Gyeong-Nam;Park, Wang-Hee;Um, Sung-Yun;Jang, Jun-min;Lim, Sol-Ma-Ru;Yun, Hyun-Chan;Hyeon, Seong-Woo;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.339-344
    • /
    • 2017
  • An all-transparent photodetector was fabricated by structuring $Cu_2O$/ZnO/AZO/ITO on a glass substrate. The visible-range transmittance was as high as 80%, which ensures clear vision forhuman eyes. High-transparency metal conductive oxides (p-type $Cu_2O$ and n-type ZnO) were appliedto form the transparent p/n junction. The functional AZO layer was adopted to improve the transparent photodetector performance between the ZnO and ITO, improving the photoresponses because of its electrical conductivity. To clarify the AZO functionality, a comparator device was prepared without the AZO layer in the formation of $Cu_2O$/ZnO/ITO/Glass. The $Cu_2O$/ZnO/AZO/ITO device provided a rectifying ratio of 113.46, significantly better than the 9.44 of the $Cu_2O$/ZnO/ITO device. In addition, the $Cu_2O$/ZnO/AZO/ITO device's photoresponses at short wavelengths were better than those of the comparator. The functioning AZO layer provides ahigh-performing transparent Cu oxide photodetector and may suggest a route for the design of efficient photoelectric devices.

Local structure of transparent flexible amorphous M-In-ZnO semiconductor

  • Son, L.S.;Kim, K.R.;Yang, D.S.;Lee, J.C.;Sung, N.;Lee, J.;Kang, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.164-164
    • /
    • 2010
  • The impurity doped ZnO has been extensively studied because of its optoelectric properties. GIZO (Ga-In-Zn-O) amorphous oxide semiconductors has been widely used as transparent flexible semiconductor material. Recently, various amorphous transparent semiconductors such as IZO (In-Zn-O), GIZO, and HIZO (Hf-In-Zn-O) were developed. In this work, we examined the local structures of IZO, GIZO, and HIZO. The local coordination structure was investigated by the extended X-ray absorption fine structure. The IZO, GIZO and HIZO thin films ware deposited on the glass substrate with thickness of 400nm by the radio frequency sputtering method. The targets were prepared by the mixture of $In_2O_3$, ZnO and $HfO_2$ powders. The percent ratio of In:Zn in IZO, Ga:In:Zn in GIZO and Hf:In:Zn in HIZO was 45:55, 33:33:33 and 10:35:55, respectively. In this work, we found that IZO, GIZO and HIZO are all amorphous and have a similar local structure. Also, we obtained the bond distances of $d_{Ga-O}=1.85\;{\AA}$, $d_{Zn-O}=1.98\;{\AA}$, $d_{Hf-O}=2.08\;{\AA}$, $d_{In-O}=2.13\;{\AA}$.

  • PDF

Protective Layer on Active Layer of Al-Zn-Sn-O Thin Film Transistors for Transparent AMOLED

  • Cho, Doo-Hee;KoPark, Sang-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Cho, Kyoung-Ik;Ryu, Min-Ki;Chung, Sung-Mook;Cheong, Woo-Seok;Yoon, Sung-Min;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.318-321
    • /
    • 2009
  • We have studied transparent top gate Al-Zn-Sn-O (AZTO) TFTs with an $Al_2O_3$ protective layer (PL) on an active layer. We also fabricated a transparent 2.5 inch QCIF+AMOLED display panel using the AZTO TFT back-plane. The AZTO active layers were deposited by RF magnetron sputtering at room temperature and the PL was deposited by ALD with two different processes. The mobility and subthreshold slope were superior in the cases of the vacuum annealing and the oxygen plasma PL compared to the $O_2$ annealing and the water vapor PL, however, the bias stability was excellent for the TFTs of the $O_2$ annealing and the water vapor PL.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

Transparent Phosphorus Doped ZnO Ohmic Contact to GaN Based LED

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.417-420
    • /
    • 2009
  • This study develops a highly transparent ohmic contact using phosphorus doped ZnO with current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The phosphorus doped ZnO transparent ohmic contact layer was prepared by radio frequency magnetron sputtering with post-deposition annealing. The transmittance of the phosphorus doped ZnO exceeds 90% in the region of 440 nm to 500 nm. The specific contact resistance of the phosphorus doped ZnO on p-GaN was determined to be $7.82{\times}10^{-3}{\Omega}{\cdot}cm^2$ after annealing at $700^{\circ}C$. GaN LED chips with dimensions of $300\times300{\mu}m$ fabricated with the phosphorus doped ZnO transparent ohmic contact were developed and produced a 2.7 V increase in forward voltage under a nominal forward current of 20 mA compared to GaN LED with Ni/Au Ohmic contact. However, the output power increased by 25% at the injection current of 20 mA compared to GaN LED with the Ni/Au contact scheme.

Transparent conducting ZnO thin films deposited by a Sol-gel method (솔젤법으로 제작한 ZnO 박막의 광전도특성 연구)

  • Kim, Gyeong-Tae;Kim, Gwan-Ha;Kim, Jong-Gyu;U, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.320-320
    • /
    • 2007
  • Nowadays, ZnO thin films are investigated as transparent conductive electrodes for use in optoelectronics devices including flat displays, thin films transistors, solar cells because of their unique optical and electrical properties. For the use as transparent conductive electrodes, a film has to have low resistivity, high absorption in the ultra violent light region and high optical transmission in the visible region. Different technologies such as electron beam evaporation, chemical vapor deposition, laser evaporation, DC and RF magnetron sputtering and have been reported to produce thin films of ZnO with adequate performance for applications. However, highly transparent and conductive doped-ZnO thin films deposited by a metal-organic decomposition method have not been reported before. In this work, the effect of dopant concentration, heating treatment and annealing in areducing atmosphere on the structure, morphology, electrical and optical properties of ZnO thin films deposited on glass substrates by a Sol-gel method are investigated.

  • PDF