Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.8.417

Transparent Phosphorus Doped ZnO Ohmic Contact to GaN Based LED  

Lim, Jae-Hong (Department of Chemical & Environmental Engineering, University of California)
Park, Seong-Ju (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.19, no.8, 2009 , pp. 417-420 More about this Journal
Abstract
This study develops a highly transparent ohmic contact using phosphorus doped ZnO with current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The phosphorus doped ZnO transparent ohmic contact layer was prepared by radio frequency magnetron sputtering with post-deposition annealing. The transmittance of the phosphorus doped ZnO exceeds 90% in the region of 440 nm to 500 nm. The specific contact resistance of the phosphorus doped ZnO on p-GaN was determined to be $7.82{\times}10^{-3}{\Omega}{\cdot}cm^2$ after annealing at $700^{\circ}C$. GaN LED chips with dimensions of $300\times300{\mu}m$ fabricated with the phosphorus doped ZnO transparent ohmic contact were developed and produced a 2.7 V increase in forward voltage under a nominal forward current of 20 mA compared to GaN LED with Ni/Au Ohmic contact. However, the output power increased by 25% at the injection current of 20 mA compared to GaN LED with the Ni/Au contact scheme.
Keywords
phosphorus doped ZnO; ohmic contact; GaN LED;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys, Lett., 86(1), 1 (1999)
2 O. Ambacher, J. Phys. D, 31(20), 2653 (1998)   DOI   ScienceOn
3 S. Nakamura, G. Fasol, The Blue Laser Diode, Springer, Berlin, (1997)
4 V. Srikant and D. R. Clarke, J. Appl. Phys., 83(10), 5447 (1998)   DOI   ScienceOn
5 B. V. Crist, Handbook of Monochromatic XPS Spectrometer, Willy, New York, (2000)
6 L. -C. Chen, J. -K. Ho, C. -S. Jong, C. C. Chiu, K.-K. Shih, F. -R. Chen, J. -J. Kai and L. Chang, Appl. Phys. Lett., 76(25), 3703 (2000)   DOI   ScienceOn
7 R. -H. Horng, D. -S. Wuu, Y. -C. Lien, and W. -H. Lan, Appl. Phys. Lett., 79(18), 2925 (2001)   DOI   ScienceOn
8 K. -K. Kim, H. -S. Kim, D. -K. Hwang, J. -H. Lim and S. -J. Park, Appl. Phys. Lett., 83(1), 63 (2003)   DOI   ScienceOn
9 D.-J. Kim, Y. -T. Moon, K. -M. Song, and S. J. Park, Jpn. J. Appl. Phys. Part 1, 40(5A), 3085 (2001)   DOI
10 J. -K. Ho, C. -S. Jong, C. C. Chiu, C. -N. Huang, C. -Y. Chen, and K. -K. Shih, Appl. Phys. Lett., 74(9), 1275 (1999)   DOI   ScienceOn
11 J. -H. Lim, D. K. Hwang, H. S. Kim, J. H. Yang, R. Navamathavan, and S.-J. Park, J. Electrochem. Soc., 152(6), G491 (2005)   DOI   ScienceOn
12 J. -H. Lim, C. -K. Kang, K. -K. Kim, I. -K. Park, D. -K. Hwang, and S. -J. Park, Advanced Materials, 18(20), 2720 (2006)   DOI   ScienceOn