• Title/Summary/Keyword: Transparent Conductive Film

Search Result 283, Processing Time 0.026 seconds

Power 및 temperature에 의한 증착률 변화와 Al-doped ZnO의 특성변화에 관한 연구

  • An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.107-107
    • /
    • 2011
  • 오늘 날 transparent conductive oxide는 다양한 분야에서 활용되고 있다. 최근에는 태양전지 분야에서도 많이 활용되고 있으며, 초기에는 transmittance 및 낮은 sheet resistance 특성을 가지는 ITO가 많이 활용되었지만 thin film solar cell와 같이 hydrogenation 공정에 약한 ITO보다는 Al-doped ZnO가 사용되기 시작하면서 많은 연구가 진행되고 있다. 본 연구에서는 thin film solar cell 및 silicon heterojunction solar cell에 적용 가능한 Al-doped ZnO에 관한 연구로써 a-Si:H의 Si-H bonds에 영향을 주지 않는 낮은 영역의 substrate temperature와 power로 Al-doped ZnO를 형성하고 상기 parameter에 따른 Al-doped ZnO의 특성 변화에 대해서 분석하였다. 특히 substrate temperature가 변화할수록 carrier concentration 및 sheet resistance가 많은 변화를 보였으며 이로 인하여 transmittance 특성이 온도에 따라 좋아지다가 너무 높은 온도에서는 오히려 좋지 않게 되었다. 이는 너무 높은 carrier concentration은 free carrier absorption에 의해 transmittance 특성을 오히려 좋지 않게 한다. 우리는 본 연구를 통해 92.677% (450 nm), 90.309% (545 nm), 94.333% (800 nm)의 transmittance를 얻을 수 있었다.

  • PDF

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

Effects of Substrate Temperature on Properties of Sb-doped SnO2 Thin Film

  • Do Kyung, Lee;Young-Soo, Sohn
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.371-375
    • /
    • 2022
  • Antimony-doped tin oxide (ATO) thin films, one type of transparent conductive oxide (TCO) films, were prepared on a SiO2-coated glass substrate with different substrate temperatures by a radio-frequency magnetron sputtering system. Structural, optical, and electrical characteristics of the deposited ATO films were analyzed using X-ray diffraction, scanning electron microscopy, alpha-step, ultraviolet-visible spectrometer, and Hall effect measurement. The substrate temperature during deposition did not affect the basic crystal structure of the films but changed the grain size and film thickness. The optical transmittance of the ATO films deposited at different substrate temperatures was over 70%. The lowest sheet resistance and resistivity were 8.43 × 102 Ω/sq, and 0.3991 × 10-2 Ω·cm, respectively, and the highest carrier concentration and mobility were 2.36 × 1021 cm-3 and 6.627 × 10-2 cm2V-1s-1, respectively, at a substrate temperature of 400 ℃.

A Study on the Characteristics of NiInZnO/Ag/NiInZnO Multilayer Thin Films Deposited by RF/DC Magnetron Sputter According to the Thickness of Ag Insertion Layer (RF/DC 마그네트론 스퍼터로 제조한 NiInZnO/Ag/NiInZnO 다층박막의 Ag 금속 삽입층 두께 변화에 따른 특성 연구)

  • Kim, Nam-Ho;Kim, Eun-Mi;Heo, Gi-Seok;Yeo, In-Seon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2014-2018
    • /
    • 2016
  • Transparent, conductive electrode films, showing the particular characteristics of good conductivity and high transparency, are of considerable research interest because of their potential for use in opto-electronic applications, such as smart window, photovoltaic cells and flat panel displays. Multilayer transparent electrodes, having a much lower electrical resistance than widely-used transparent conducting oxide electrodes, were prepared by using RF/DC magnetron sputtering system. The multilayer structure consisted of three layers, [NiInZnO(NIZO)/Ag/NIZO]. The optical and electrical properties of the multilayered NIZO/Ag/NIZO structure were investigated in relation to the thickness of each layer. The optical and electrical characteristics of multilayer structures have been investigated as a function of the Ag and NIZO film thickness. High-quality transparent conductive films have been obtained, with sheet resistance of $9.8{\Omega}/sq$ for Ag film thickness of 8 nm. Also the multilayer films of inserted Ag 8 nm thickness showed a high optical transmittance above 93% in the visible range. The electrical and optical properties of the new multilayer films were mainly dependent on the thickness of Ag insertion layer.

Lifetime Estimation of an ACF in Navigation (Navigation Connection용 ACF(Anisotropic Conductive Film)의 수명 예측)

  • Yu, Yeong-Chang;Shin, Seung-Jung;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1277-1282
    • /
    • 2008
  • Recently LCD panels have becom very important components for portable electronics. In the high density interconnection material, ACF's are used to connect the outer lead of the tape automated bonding to the transparent indium tin oxide electrodes of the LCD panel. ACF consists of an adhesive polymer matrix and randomly dispersed conductive balls. In this study, we analyzed Failure Mode / Mechanism of ACF which is identified Conductive ball Corrsion, Delamination, Crack and Polymer Expansion / Swelling. In ALT(Accelerated Life Test), we select primary stress factors as temperature and humidity. As time passes by, an increase of connection resistance was observed. In conclusion, we have found that high temperature / humidity affects the adhesion.

  • PDF

Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices (유연전자소자를 위한 차세대 유연 투명전극의 개발 동향)

  • Kim, Joo-Hyun;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

The Enhanced Thermoforming Stability of ITO Transparent Electrode Film by Using the Conducting Polymer Thin-Film (전도성 고분자 박막을 이용한 ITO 투명 전극 필름의 열성형 안정성 향상 연구)

  • Seo Yeong Son;Seong Yeon Park;Sangsub Lee;Changhun Yun
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.248-256
    • /
    • 2023
  • Indium tin oxide (ITO) transparent electrode film has been widely adopted for the various applications such as display and electric vehicle. In this paper, we studied how to enhance the thermoforming stability of ITO film by applying the highly conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin layer. Based on the change of sheet resistance value, the influence of the additional solvent with different boiling point was investigated for the PEDOT:PSS coating solution. In addition, by analyzing optical transmittance and Raman spectrum, we confirmed the key mechanism which determine the final electrical conductivity of the PEDOT:PSS on ITO film using an ethylene glycol solvent. The final ITO transparent electrode coated with PEDOT:PSS performed the outstanding endurance of electrical conduction even in 126% stretching condition.

Fabrication and Characterizations of ITO Film as a Transparent Conducting Electrode for PDP Application (PDP 투명전극의 응용을 위한 ITO 박막의 제작평가)

  • Park, Kang-Il;Lim, Dong-Gun;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.788-791
    • /
    • 2002
  • Tin doped indium oxide(ITO) films are highly conductive and transparent in the visible region whose property leads to the applications in solar cell, liquid crystal display, thermal heater, and other sensors. This paper investigated ITO films as a transparent conducting films for application of PDP. ITO films were grown on glass substrate by RF magnetron sputtering method. To achieve high transmittance and low resistivity, we examined the various film deposition such as substrate temperature, gas pressure, annealing temperature, and deposition time. We recommend the substrate temperature of $500^{\circ}C$ and post annealing of $200^{\circ}C$ in $O_2$ atmosphere for good conductivity and transmittance. From XRD examination, ITO films showed a preferred(222) orientation. As substrate temperature increased from RT to $500^{\circ}C$, the intensity of the (222) peak increased. The highest peak intensity was observed at a substrate temperature of $500^{\circ}C$. with the optimum growth conditions, ITO films showed resistivity of $1.04{\times}10^{-4}{\Omega}-cm$ and transmittance of 81.2% for a film 300nm thick in the wavelength range of the visible spectrum.

  • PDF

The effect on characteristic of ITO(glass) by polyimide thin film process (Polyimide 막 공정이 ITO Glass의 특성에 미치는 영향)

  • Kim, Ho-Soo;Kim, Han-Il;Jung, Soon-Won;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.857-860
    • /
    • 2002
  • The material that is both conductive in electricity and transparent to the visible-ray is called transparent conducting thin film. It has many field of application such as solar cell, liquid crystal display, transparent electrical heater, selective optical filter, and a optical electric device. In this study, indium tin oxide (ITO ; Sn-doped $In_2O_3$) thin films were deposited on $SiO_2$/soda-lime glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy (AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-1000nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.