• Title/Summary/Keyword: Transparent Conductive Electrode

Search Result 128, Processing Time 0.045 seconds

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

Fabrication of transparent conductive thin films with Ag mesh shape using the polystyrene beads monolayer

  • Jung, Taeyoung;Choi, Eun Chang;Hong, Byungyou
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.313-313
    • /
    • 2016
  • Transparent conductive oxide (TCO) films have many disadvantages, such as rarity, possible exhaustion, process temperature limitations, and brittleness on a flexible substrate. In particular, as display technology moves toward flexible displays, TCO will become completely unsuitable due to its brittleness. To address theses issue, many researchers have been studying TCO substitutes. In recent efforts, metal nanowires, conducting polymers, carbon nanotube networks, graphene films, hybrid thin films, and metal meshes/grids have been evaluated as candidates to replace TCO electrodes. In this study, we fabricated the TCO film with Ag meshes shape using polystyrene (PS) beads monolayer on the substrate. The PS beads were used as a template to create the mesh pattern. We fabricated the monolayer on the flexible substrate (PES) with the well-aligned PS beads. Electrodes with Ag mesh shape were formed using this patterned monolayer. We could fabricated the Ag mesh electrode with the sheet resistance with $8ohm{\Omega}/{\Box}$.

  • PDF

Electrical properties of AZO transparent conductive oxide with substrate bias and $H_2$ annealing (기판바이어스와 수소열처리에 의한 AZO 투명전도막의 전기적 특성)

  • Jeong, Yun-Hwan;An, Jeong-Geun;Choi, Dai-Seub;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.331-331
    • /
    • 2008
  • Transparent conductive oxide (TCO) are necessary as front electrode or anti-reflecting coating for increasing efficiency of LED and Photodiode. In this paper, aluminum-doped Zinc oxide films(AZO) were prepared by RF magnetron sputtering on Si substrate at room temperature with application of substrate bias from -60 to 60 V. Then annealed at temperature of 200, 300 and $400^{\circ}C$ for 1hr in $H_2$ ambient. Structural and electrical property of AZO thin films were investigated.

  • PDF

Silver Nanowire-Based Stretchable Transparent Electrodes for Deformable Organic Light-Emitting Diodes (신축성 유기발광다이오드를 위한 은 나노와이어 기반의 신축성 투명 전극 기판 연구)

  • Jung, Hyunsu;Go, Hyeck;Park, Gye-Choon;Yun, Changhun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.609-614
    • /
    • 2017
  • The proposed stretchable transparent electrodes based on silver nanowires (AgNWs) were prepared on a polyurethane (PU) substrate. In order toavoid the surface roughness caused by the silver nanowires, a titanium oxide ($TiO_2$) buffer layer was addedby coating and heating the organometallic sol-gel solution. The fabricated stretchable electrodes showedan electrical sheet resistance of $24{\Omega}sq^{-1}$, 78% transmittance at 550 nm, and an average surface roughness below 5 nm. Furthermore, the AgNW-based electrode maintained its initial electrical resistance under 130% strain testing conditions, without the assistance of additional conductive polymer layers. In this paper, the critical role of the $TiO_2$ buffer layer between the AgNW network and the PU substrate has been discussed.

Transparent Electrode Characteristics of SnO2/AgNi/SnO2 Multilayer Structures (SnO2/AgNi/SnO2 다중층 구조의 투명 전극 특성)

  • Min-Ho Hwang;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.500-506
    • /
    • 2024
  • The transparent electrode characteristics of the SnO2/AgNi/SnO2 (OMO) multilayer structures prepared by sputtering were investigated according to the annealing temperature. Ni-doped Ag of various compositions was selected as the metal layer and heat treatment was performed at 100~300℃ to evaluate the thermal stability of the metals. The manufactured OMO multilayer structures were heat treated for 6 hours at 400~600℃ in an N2 atmosphere. The structural, electrical, and optical properties of the OMO structures before and after annealing were evaluated and analyzed using a UV-VIS spectrophotometer, 4-point probe, XPS, FE-SEM, etc. OMO with Ni-doped Ag shows improved performance due to the reduction of structural defects of Ag during annealing, but OMO structure with pure Ag shows degradation characteristics due to Ag diffusion into the oxide layer during high-temperature annealing. The figure of merit (FOM) of SnO2/Ag/SnO2 was highest at room temperature and gradually decreased as the heat treatment temperature increased. On the other hand, the FOM value of SnO2/AgNi/SnO2 mostly showed its maximum value at high temperature(~550℃). In particular, the FOM value of SnO2/Ag-Ni (3.2 at%)/SnO2 was estimated to be approximately 2.38×10-2-1. Compared to transparent electrodes made of other similar materials, the FOM value of the SnO2/Ag-Ni (3.2 at%)/SnO2 multilayer structure is competitive and is expected to be used as an alternative transparent conductive electrode in various devices.

Characterization of thin film Si solar cell with FTO transparent electrode (FTO 투명전극에 따른 박막 실리콘 태양전지 특성평가)

  • Kim, S.H.;Kim, Y.J.;No, I.J.;Cho, J.W.;Lee, N.H.;Kim, J.S.;Shin, P.K.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1351_1352
    • /
    • 2009
  • We deposited $SnO_2$:F thin films by atomospheric pressure chemical vapor deposition(APCVD) on corning glass. $SnO_2$:F films were used as transparent conductive oxide (TCO) electrode for Si thin film solar cells. We have investigated structural, electrical and optical properties of $SnO_2$:F thin films and fabricated thin film Si solar cells by plasma enhanced CVD(PECVD) on $SnO_2$:F thin films The cells were characterized by I-V measurement using AM1.5 spectra. Conversion efficiency of our cells were between 5.61% and 6.45%.

  • PDF

Fabrication of High-performance Carbon Counter Electrode for Dye-sensitized Solar Cells (염료감응 태양전지용 고성능 탄소 상대전극 제작)

  • Jang, Yeon-Ik;Lee, Seung-Yong;Kim, Dong-Hwan;Park, Jong-Ku
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.44-49
    • /
    • 2007
  • In the fabrication of dye-sensitized solar cells (DSSCs), carbon counter electrode has been tested for replacing the platinum counter electrode which has two drawbacks: limited surface area and high material cost. Poor mechanical stability of carbon layer due to weak bonding strength to electrically conductive TCO (transparent conducting oxide) glass substrate is a crucial barrier for practical application of carbon counter electrode. In the present study a carbon counter electrode with high conversion efficiency, comparable to Pt counter electrode, could be fabricated by adaption of a bonding layer between particulate carbon material and TCO substrate.

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire (무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성)

  • Young Sil Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.456-462
    • /
    • 2023
  • An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.

The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power (RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성)

  • Zhang, Ya Jun;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics (유연·신축성 전자 소자 개발을 위한 은 나노와이어 기반 투명전극 기술)

  • Kim, Dae-Gon;Kim, Youngmin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.