Browse > Article
http://dx.doi.org/10.6117/kmeps.2015.22.1.007

Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics  

Kim, Dae-Gon (Micro Electronic Packaging Laboratory, Sungkyunkwan University)
Kim, Youngmin (Display Components & Materials Research Center, Korea Electronics Technology Institute)
Kim, Jong-Woong (Display Components & Materials Research Center, Korea Electronics Technology Institute)
Publication Information
Journal of the Microelectronics and Packaging Society / v.22, no.1, 2015 , pp. 7-14 More about this Journal
Abstract
Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.
Keywords
Ag nano wire; Transparent electrode; Flexible electronics; Stretchable electronics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G. Li and Y. Yang, "Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors", ACS Nano, 5, 9877 (2011).   DOI
2 C. H. Kim, S. H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov and S. H. Jin, "Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications", ACS Nano, 5, 3319 (2011).   DOI
3 D. S. Hecht, L. Hu and G. Irvin, "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures", Advanced Materials, 23, 1482 (2011).   DOI   ScienceOn
4 C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong and B. Gao, "Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics", Advanced Materials, 23, 3052 (2011).   DOI
5 W. Gaynor, G. F. Burkhard, M. D. McGehee and P. Peumans, Advanced Materials, 23, 2905 (2011).   DOI   ScienceOn
6 L. Hu, H. Wu and Y. Cui, "Smooth Nanowire/Polymer Composite Transparent Electrodes", MRS Bulletin 36, 760 (2011).   DOI
7 Y. Li, S. Chen, M. Wu and J. Sun, "Polyelectrolyte Multilayers Impart Healability to Highly Electrically Conductive Films", Advanced Materials, 24, 4578 (2012).   DOI
8 S. Rosset and H. R. Shea, "Flexible and stretchable electrodes for dielectric elastomer actuators", Applied Physics A, 110, 281 (2013).   DOI
9 D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li and Y. Lu, "Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes", Journal of the American Chemical Society, 134, 14283 (2012).   DOI
10 J. T. Wu, S. Hsu, M. H. Tsai, Y. F. Liu and W. S. Hwang, "Direct ink-jet printing of silver nitrate-silver nanowire hybrid inks to fabricate silver conductive lines", Journal of Materials Chemistry, 22, 15599 (2012).   DOI
11 S. Liu, J. Yue and A. Gedanken, "Synthesis of Long Silver Nanowires from AgBr Nanocrystals", Advanced Materials, 13, 656 (2001).   DOI
12 Y. Sun, Y. Yin and B. T. Mayers, T. Herricks and Y. Xia, "Uniform Silver Nanowires Synthesis by Reducing $AgNO_3$ with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)", Chemistry of Materials, 14, 4736 (2002).   DOI
13 Y. Sun, B. Gates, B. Mayers and Y. Xia, "Crystalline Silver Nanowires by Soft Solution Processing", Nano Letters, 2, 165 (2002).   DOI
14 Y. Sun, B. Mayers, T. Herricks and Y. Xia, "Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence", Nano Letters, 3, 955 (2003).   DOI
15 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009).   DOI
16 J. W. Kim, S. W. Lee, Y. Lee, S. B. Jung, S. J. Hong and M. G. Kwak, "Synthesis of Ag Nanowires for the Fabrication of Transparent Conductive Electrode", Journal of Nanoscience and Nanotechnology, 13, 6244 (2013).   DOI
17 K. Alzoubi, M. M. Hamasha and B. Sammakia, "Bending Fatigue Study of Sputtered ITO on Flexible Substrate", Journal of Display Technology, 7, 593 (2011).   DOI
18 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Ijima, "Roll-toroll production of 30-inch graphene films for transparent electrodes", Nature Nanotechnology, 5, 574 (2010).   DOI
19 M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. Hu and G. Gruner, "Organic solar cells with carbon nanotube network electrodes", Applied Physics Letters, 88, 233506 (2006).   DOI
20 J. Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola and P. Glatkowski, "Organic solar cells with carbon nanotubes replacing $I_2O_3$: Sn as the transparent electrode", Applied Physics Letters, 88, 233503 (2006).   DOI   ScienceOn
21 S. Zhu, Y. Gao, B. Hu, J. Li, J. Su, Z. Fan and J. Zhou, "Transferable self-welding silver nanowire network as high performance transparent flexible electrode", Nanotechnology, 24, 335202 (2013).   DOI
22 J. Lee, I. Lee, T. S. Kim and J. Y. Lee, "Efficient welding of silver nanowire networks without post-processing", Small, 9, 2887 (2013).   DOI
23 Liang, L. Li, X. Niu, Z. Yu and Q. Pei, "Elastomeric polymer light-emitting devices and displays", Nature Photonics, 7, 817 (2013)   DOI
24 J. A. Jeong and H. K. Kim, "Ag nanowire percolating network embedded in indium tin oxide nanoparticles for printable transparent conducting electrodes", Applied Physics Letters, 104, 071906 (2014).   DOI
25 Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong and J. Moon, "Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics", NPG Asia Materials, 6, e105 (2014).   DOI
26 L. Li, Z. Yu, W. Hu, C. Chang, Q. Chen and Q. Pei, "Efficient Flexible Phosphorescent Polymer Light-Emitting Diodes Based on Silver Nanowire-Polymer Composite Electrode", Advanced Materials, 23, 5563 (2011).   DOI
27 W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lussem, L. Muller-Meskamp, P. Peumans and K. Leo, "Color in the Corners: ITO-Free White OLEDs with Angular Color Stability", Advanced Materials, 25, 4006 (2013).   DOI
28 C. H. Song, K. H. Ok, C. J. Lee, Y. Kim, M. G. Kwak, C. J. Han, N. Kim, B. K. Ju and J. W. Kim, "Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes", Organic Electronics, 17, 208 (2015).   DOI
29 J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He and K. Suganuma, "Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors", Nano-Micro Letters, 7, 51 (2015).   DOI
30 S. Yao and Y. Zhu, "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires", Nanoscale, 6, 2345 (2014).   DOI
31 Y. Q. Duan, Y. A. Huang, Z. P. Yin, N. B. Bu and W. T. Dong, "Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing", Nanoscale, 6, 3289 (2014).   DOI