• 제목/요약/키워드: Transparency electrode

검색결과 80건 처리시간 0.032초

로이 응용을 위한 비정질 In-Si-O 다층구조 특성 평가 (Characterization of Amorphous In-Si-O Multilayer for Low Emissivity Applications)

  • 이영선;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.483-485
    • /
    • 2014
  • Transparent amorphous In-Si-O (ISO)/Ag/In-Si-O (ISO) has been reported for low emissivity (low-e) applications. Effective Si doping into the $In_2O_3$ matrix led to a completely amorphous ISO film as well as a low resistivity and a high optical transmittance. The optical and electrical performances were examined by measuring transmittance with a UV-VIS spectrophotometer and resistivity with a Hall effect measurement. Consequently, low-e glass with ISO/Ag/ISO showed a high transparency in the visible region and low emissivity in the infrared region, indicating that ISO is a promising amorphous transparent electrode for low-e glass.

투광성 PLZT의 HYSTERESIS와 광투과 효과에 과한 연구 (A study on properties optical transparency effect and Hysteresis of transparent PLZT)

  • 이호걸;김상연;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.21-23
    • /
    • 1993
  • In this study PLZT was selected which has the excellent quadratic electro-optic property and slim-loop. It was fabricated by the methods of vacuum hot-pressing and sintering. The electrode of color filter was evaporated using the interdigital type masks. Through XRD have we investigated the molecular structure composition formular. Hysteresis and transmission characteristics were measured, The transmission of RGB was envestigated. We are going to study the correlation of coercive field and the nontransmited field.

  • PDF

투광성 PLZT의 HYSTERESIS와 광투과 효과에 관한 연구 (A study on properties optical transparency effect and Hysteresis of transparent PLZT)

  • 이호걸;김상연;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.555-557
    • /
    • 1993
  • In this study PLZT was selected which has the excel lent quadratic electro-optic property and slim-loop. It was fabricated by the methods of vacuum hot-pressing and sintering. The electrode of color filter was evaporated using the interdigital type masks. Through XRD have we investigated the molecular structure composition formular. Hysteresis and transmission characteristics were measured. The transmission of RGB was envestigated. We are going to study the correlation of coercive field and the nontransmited field.

  • PDF

건조 상태에 따른 CNT 및 ITO로 코팅된 PET 투명전극의 표면 조절 및 내구성 평가 (Surface control and durability evaluation of CNT and ITO coated PET transparent electrode with different dry conditions)

  • 권동준;왕작가;구가영;박종만
    • Composites Research
    • /
    • 제24권5호
    • /
    • pp.17-22
    • /
    • 2011
  • 최근 투명전극으로 주로 사용되고 있는 ITO 재료를 대체하가 위해 CNT를 이용한 투명전극의 활용 연구가 활발히 진행되고 있다. 본 연구에서는 건조온도에 따라 CNT와 ITO의 응집이 일어나는 정도가 달라진다는 점을 이용하여 표면을 조절하여 CNT 및 ITO가 코팅된 폴리에틸렌 테레프탈레이트 (PET)를 제조하였다. CNT를 ITO를 대신할 투명전극으로의 활용 가능성을 평가하면서, 표면의 물성 변화를 유도 하기 위해 코팅 후 건조온도를 $20^{\circ}C$, $80^{\circ}C$, 그리고 $120^{\circ}C$ 3단계로 나누어 표면을 관찰하였다. 전기저항측정법을 활용하여 재료의 내구성 및 전기적 물성을 평가함으로써 제조한 투명전극의 특성을 평가하였다. 전자현미경을 이용하여 건조온도에 따른 표면 변화를 관찰하였고, UV-스펙트럼을 통해 건조온도가 증가함에 따라 투과도가 변화하는 것을 확인하였다. 나노입자의 코팅 표면 조절에 따른 전기적 물성 변화를 확인하기 위해 순환전압전류법을 이용 하였다. CNT 코팅 표면의 내구성이 ITO 코팅 표면의 내구성보다 우수함을 알았다. 그리고, 건조온도가 높을수록 나노입자들의 응집이 크게 증가 하여 내구성이 우수한 코팅 표면을 만들며, 이에 따른 전기적 물성의 향상도 확인하였다.

Top Emission OLED를 위한 ITO 박막 특성에 대한 연구 (A Study on the Characteristics of ITO Thin Film for Top Emission OLED)

  • 김동섭;신상훈;조민주;최동훈;김태근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상 (Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition)

  • 지한나;장지성;이상엽;정중희
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.311-316
    • /
    • 2019
  • Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from $21.9{\Omega}{\square}$ to $12.6{\Omega}{\square}$. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.

ITiO박막의 전기적 특성 향상을 위한 공정변수의 최적화 (Optimization of process parameters for improvement of electrical properties of ITiO film)

  • 최우진;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1430-1431
    • /
    • 2011
  • To develope the transparent conducting oxide(TCO) films is one of the essential technologies to improve various properties of electro-optical devices such as dye-sensitized solar cells(DSCs). ITiO thin film is considered one of the candidates as TCO electrodes of DSCs because it shows many advantages such as the high transparency in long wavelength range above 700nm and excellent properties of electrical necking between nanoporous TiO2 and ITiO transparent electrode. This paper presents the effect of sputtering processes on the structural, electrical and optical properties of ITiO thin film deposited by r.f. magnetron sputtering. The effect of doping concentration of Ti on the chemical compounds and C axis-orientation properties of were mainly studied experimentally. The morphology and electrical properties were greatly influenced by deposition processes, especially by the doping concentration of Ti. The $3.8{\times}10^{-4}{\Omega}{\cdot}cm$ of minimum volume resistivity were obtained under the experimental conditions of gas pressure 7mTorr, substrate temperature $300^{\circ}C$, and 2.5% of Ti doping concentration.

  • PDF

플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성 (Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate)

  • ;박병욱;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

ITO 기판의 Aquaregia 처리에 의한 녹색발광 OLED의 효율 향상 연구 (Efficiency Improvement of Green Emitting OLED by Aquaregia Treatment of ITO Substrate)

  • 최규채;김동은;김병상;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1291-1292
    • /
    • 2008
  • ITO is widely used as an anode material in OLED, because of its good transparency, low electrical resistivity, high work function, and efficient hole injection properties. The interface between the electrode and the organic layer in the OLED effects the charge injection process and may influence the electrical and the luminance properties. Surface treatment of ITO, such as an Aquaregia treatment has been shown to enhance the efficiency, and luminance characteristics of the OLED. In this study, we investigated the effect of Aquaregia treatment. The fundamental structures of the OLED were ITO/NPB/$Alq_3$/LiF/Al. The current density-voltage-luminance, efficiency, and lifetime characteristics were measured with untreated and Aquaregia-treated ITO substrates. The Aquaregia treatment was found to enhance the performance of OLED. For the Aquaregia treated device, the maximum luminance and efficiency were increased by about 2 times compared to the untreated device. The mechanism of the Aquaregia treatment is discussed based on AFM analyses.

  • PDF