• Title/Summary/Keyword: Transparency electrode

Search Result 80, Processing Time 0.028 seconds

Fabrication and Characteristics of Indium Tin Oxide Films on CR39 Substrate for OTFT

  • Kwon, Sung-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.267-270
    • /
    • 2006
  • The Indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. ITO thin films deposited at room temperature because CR39 substrates its glass-transition temperature of is $130^{\circ}C$. ITO thin films used bottom and top electrode and for organic thin film transparent transistor.(OTFT) ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300 - 800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300 - 800 nm) measured without post annealing process and $9.83{times}10{-4}{\Omega}cm$ a low resistivity was measured thickness of 300 nm.

Fabrication and characteristics of ITO thin films on CR39 substrate for transparent OTFT

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2007
  • The indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. The ITO thin films deposited at room temperature because CR39 substrate its glass-transition temperature is $130^{\circ}C$. The ITO thin films used bottom and top electrode and for organic thin film transparent transistors (OTFTs). The ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300-800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of the ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300-800 nm) measured without post annealing process and a low resistivity value $9.83{\times}10^{-4}{\Omega}cm$ was measured thickness of 300 nm. All fabrication process of ITO thin films did not exceed $80^{\circ}C$.

Effect of Transparency of CNT counter electrodes on the Efficiency of DSSCs

  • Lee, Won-Jae;Ramasamy, Easwaramoorthi;Lee, Dong-Yun;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.615-616
    • /
    • 2005
  • Carbon Nanotubes (CNT) on flexible indium tin oxide (ITO) PET films were prepared for dye-sensitized solar cell (DSSC). These CNTs were prepared by spray coating method for various amount of light transparency. Also, Pt counter electrode was prepared by electro deposition method. All $TiO_2$ electrodes were deposited on ITO-PET films by spray coating method. Micro structural images show that CNT counter electrodes prepared by spray-coating have more dense structure with increasing spraying time (0 to 60 seconds). DSSC consisting of $TiO_2$ electrode and CNT counter electrode was fabricated with various amount of light absorption. DSSC have higher light energy conversion efficiency with increasing the thickness of CNT counter electrode. CNT counter electrode is at least compatible to that of CNT counter electrode.

  • PDF

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

Study on the Diameter-Controlled Synthesis of Silver Nanofibers and Their Application to Transparent Conductive Electrodes (은 나노섬유의 직경제어 합성 및 투명전극 응용 연구)

  • Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.537-542
    • /
    • 2015
  • One-dimensional (1D) silver nanostructures, which possess the highest conductivity among all room-temperature materials, moderate flexibility and high transmittance, are one of the most promising candidate materials to replace conventional indium tin oxide transparent electrodes. However, the short length and large diameter of 1D silver nanostructures cause a substantial decrease in the optical transparency or an increase in the sheet resistance. In this work, ultra-long silver nanofiber networks were synthesized with a low-cost and scalable electrospinning process, and the diameter of the nanofibers were finetuned to achieve a higher aspect ratio. The decrease in the diameter of the nanofibers resulted in a higher optical transparency at a lower sheet resistance: 87 % at $300{\Omega}/sq$, respectively. It is expected that an electrospun silver nanofiber based transparent electrode can be used as a key component in various optoelectronic applications.

Electrode Thickness Optimization at Full Color OLED and Analysis of Power Consumption

  • Park, Sung-Joon;Kim, Ok-Tae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.106-110
    • /
    • 2004
  • The operating condition of the OLED (organic light-emitting diode) is very sensitive to electrode thickness properties. The electrode thickness is a significant issue in the construction of OLEDs because of its transparency, high conductivity and high efficiency as an injector into organic materials. We carried out a systematic study to optimize the electrode thickness conditions in Indiumtin oxide (ITO), Molybdenum (Mo) and Aluminum (Al). Further, we measured electrode thickness under standard conditions [ITO 1500$\AA$, Mo 2600$\AA$, Al 1500$\AA$]. We also evaluated power consumption. In addition, we analyzed substrate uniformity with IVL measurement results. From these results, it is known that the electrode thickness should be optimized in order to accomplish optimal power efficiency.

Study and Fabrication of Transparent Electrode Film by using Thermal-Roll Imprinted Ag Mesh Pattern and Coated Conductive Polymer (열형-롤 각인으로 형성한 Ag 격자 패턴과 전도성 고분자 코팅을 이용한 투명전극 필름 제작에 관한 연구)

  • Yu, Jong-Su;Jo, Jeong-Dai;Yoon, Seong-Man;Kim, Do-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.11-15
    • /
    • 2010
  • In this study, to fabricate a low-resistance and high optical transparency electrode film, the following steps were performed: the design and manufacture of electroforming stamp, the fabrication of a thermal roll-imprinted polycarbonate (PC) patterned films, the filled low-resistance Ag paste using doctor blade process on patterned PC films and spin coating by conductive polymers. As a result of PC films imprinted line width of $26.69{\pm}2\;{\mu}m$, channel length of $247.57{\pm}2\;{\mu}m$, and pattern depth of $7.54{\pm}0.2\;{\mu}m$. Ag paste to fill part of the patterned film with conductive polymer coating and then the following parameters were obtained: a sheet resistance of $11.1\;{\Omega}/sq$ optical transparency values at a wavelength of 550 nm was 80.31 %.

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode (은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Fabrication and Characteristics of Indium Tin Oxide Films on Polycarbonates CR39 Substrate for OTFTs

  • Kwon, Sung-Yeol
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.232-235
    • /
    • 2007
  • Indium tin oxide (ITO) films were deposited on polycarbonate CR39 substrate using DC magnetron sputtering. ITO thin films were deposited at room temperature because glass-transition temperature of CR39 substrate is $130^{circ}C$ ITO thin films are used as bottom and top electrodes and for organic thin film transparent transistor (OTFT). The electrodes electrical properties of ITO thin films and their optical transparency properties in the visible wavelength range (300-800 nm) strongly depend on the volume of oxygen percent. The optimum resistivity and transparency of ITO thin film electrode was achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85% transparency in the visible wavelength range (300-800 nm) was measured without post annealing process, and resistivity as low as $9.83{\times}^{TM}10^{-4}{\Omega}$ cm was measured at thickness of 300 nm.