• Title/Summary/Keyword: Transmitting Station

Search Result 150, Processing Time 0.03 seconds

Development of MF R-Mode Transmitting System for Maritime Resilient PNT in the Republic of Korea

  • Han, Younghoon;Son, Pyo-Woong;Seo, Kiyeol;Fang, Tae Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.239-244
    • /
    • 2022
  • R-Mode is terrestrial based Global Navigation Satellite System (GNSS) backup radio navigation technology which used existing maritime information service infrastructure. It has advantages on reduce the cost and reutilize the frequency resource. In this paper, we propose a method to develop a medium-frequency (MF) band R-Mode transmitting station by utilizing the currently operating Differential GNSS (DGNSS) reference station infrastructure. To this end, the considerations for co-operating the DGNSS reference station and the MF R-Mode transmitting station are analyzed. In this process, we also analyze what is necessary to configure the communication system as a navigation system for range measurement. Based on the analysis result, MF R-Mode transmitting station system is designed and architecture is proposed. The developed system is installed in the field, and the performance evaluation results is presented.

Measurement of Reference Phase Offset for the Loran-C Transmitting Signal of Pohang (포항 로란-C 송신 신호의 기준위상 오프셋 측정)

  • Lee, Chang-Bok;Won, Sung-Ho;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.475-480
    • /
    • 2012
  • In order to establish eLoran (enhanced Long Range Navigation) system, it needs the advancement of receiver, transmitter, data channel addition for Loran information, differential Loran sites for compensating Loran-c signal and ASFs (Additional Secondary Factors) database, etc. In addition, the precise synchronization of transmitting station to the UTC (Coordinated Universal Time) is essential if Loran delivers the high absolute accuracy of navigation demanded for maritime harbor entrance. For better timing synchronization to the UTC among transmitting stations, it is necessary to measure and monitor the transmission delay of the station, and the correction information of the transmitting station should be provided to the user's receivers. In this paper we presented the measurement method of absolute delay of Pohang Loran transmitting station and developed a time delay measurement system and a phase monitoring system for Loran station. We achieved -2.23 us as a result of the absolute phase delay of Pohang station and the drift of Loran pulse of the station was measured about 0.3 us for a month period. Therefore it is necessary to measure the delay offset of transmitting station and to compensate the drift of the Loran signal for the high accuracy application of PNT (Positioning, Navigation and Timing).

A Study on the Variation of the GDOP and Service Area in Accordance with Arrangement of Transmitting Station Loran C System (로오란 C 시스템에서 발신국의 배치에 따른 GDOP의 변화 및 유효범위에 관한 연구)

  • An, Jang-Yeong;Hiroshi Suzuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.365-371
    • /
    • 1990
  • In this paper, the authors calculate GDOP(Geometric Dilution of Precision) with the mast and slave transmitting stations at the past and present and simulation positions in the 9970 chain and 5970 chain of the loran C system, and analyzed variations of the GDOP and effective ranges in accordance with the shifting of transmitting stations. The results obtained are as follows; 1) The line 3.0 of equi-GDOP map that the Z slave station of 9970 chain is Guam island is falled on with line 2.0 of it's map that it is Yap island approximately, and units of GDOP of calculating with Guam island are increased then them with Yap island on the south parts of mast station. 2) If the control right of Z slave station of 9970 chain could be not transfered to japan and be closed on account of the territorial problems, the units of GDOP to calculate without it's station at any positions are very increased and the accuracy is down on the south parts of mast station. The line 5.0 of it's map is falled on with line 2.0 in case of Yap island, its Z station, and line 3.0 in case of Guam island with Z slave station approximately. 3) The X slave station of 9970 chain and 5970 chain are required rearrangement for the purpose of accurating position fix and expending service area in view of propagation route of wave and arrangement of transmitting station.

  • PDF

Performance of MIMO-OFDMA system combining power controlling algorithm with multi-beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2022
  • In this paper, we propose the new technique adopting power control to MIMO(multi-input multi-output)-OFDMA(orthogonal frequency division multiplexing Access) system with multi-beamformer. The proposed power controlling algorithm for MIMO-OFDMA allocates the transmitting power of each subcarrier based on the CSI(channel state information) and the interference signal. CSI is feedback from base station to mobile station to decide the transmitting power of each subcarrier. Through the proposed technique, we can control iteratively the transmitting power and update the weight of beamformer simultaneously. Therefore, the SNIR of each subcarrier become to converge the target SNIR and the beam is formed toward the desired direction. And the performance of MIMO-OFDMA system with the proposed approach is very improved. The improvement in bit error rate is investigated through computer simulation of a MIMO-OFDMA system with the proposed approach.

The optimum design of optical transmitting antenna versus elevation angle on the optical satellite communication up-link for B-ISDN (B-ISDN용 광위성 통신 업링크의 앙각에 따른 송신안테나 최적설계에 관한 연구)

  • 한종석;이준구;정진호;김영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.10
    • /
    • pp.64-72
    • /
    • 1995
  • In this paper, atmospheric turbulence and absorption under clear weather condition, which affect the optical satellite up-link communication between geo-satellites and earth station, were studied. In case of the up-link communication, the received optical power is weakened by pointing loss caused by beam tilt which is the main effect of turbulent atmosphere. This pointing loss directly has relation to the diameter of optical transmitting antenna. From the inverse proportion of the pointing and spaced loss, it is the regions where the diameter of transmitting antenna increases abruptly and the efficient design of transmitting antenna is impossible. In case of using channel coding, it was shown that the peak value of diameter moved to the lower regions of elevation angle with increasing the coding gain and its width was also decreased. In case of considering both coding gain and transmission rate on the design of transmitting antenna, it was known that more coding gain was necessary as transmission rate was increased.

  • PDF

Development Status of eLoran System and Its Performance Analysis (eLoran 기술개발 현황과 성능분석)

  • Seo, Ki-Yeol;Kim, Young-Ki;Park, Sang-Hyun;Fang, Tae-Hyun;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.95-96
    • /
    • 2018
  • This paper deals with the development status of eLoran system which is the best backup position, navigation, and timing (P NT) system of Global Navigation Satellite System (GNSS) and its performance result. I t especially explains the status of eLoran testbed implementation for the eLoran test service, development of eLoran transmitting system, differential Loran (dLoran) system, integrated operation and control system (IOCS), and integrated eLoran/GNSS receiver. The paper discusses about the future plan for the build up test transmitting station and backup P NT service to succeed to the trial operation of eLoran testbed system.

  • PDF

A Study on The Development of High-Efficiency Transmitting and Receiving Coils For Wireless Charging of Drones (드론 무선 충전을 위한 고효율 송, 수신 코일 개발에 관한 연구)

  • Lim, Jong-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2022
  • In this paper, a technology for a high-efficiency wireless power transmission transmitting and receiving coil that can wirelessly charge a drone is introduced. The drone station implements the ability to charge the battery wirelessly without the need to remove the battery to charge the drone's battery. In order to charge the drone's battery in the shortest time, wireless charging efficiency must be high. In order to increase the wireless charging efficiency of the drone station, a method for manufacturing high-efficiency transmitting and receiving coils and a performance measurement method are presented. Transmitting and receiving coils were manufactured considering the size and weight of the drone so as not to interfere with the flight of the drone. Efficiency of 88% or more was realized at a distance of 40mm or more between the transmitting and receiving coils.

Performance Analysis of DPSK Optical Communication for LEO-to-Ground Relay Link Via a GEO Satellite

  • Lim, Hyung-Chul;Park, Jong Uk;Choi, Mansoo;Choi, Chul-Sung;Choi, Jae-Dong;Kim, Jongah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Satellite optical communication has gained significant attention owing to its many quality features (e.g., a larger bandwidth, license free spectrum, higher data rate, and better security) compared to satellite microwave communication. Various experiments have been performed during many space missions to demonstrate and characterize inter-satellite links, downlinks, and uplinks. Korea has also planned to establish an experimental communication system using a geostationary earth orbit (GEO) satellite and the Geochang station as an optical ground station for low Earth orbit (LEO)-to-ground optical relay links. In this study, the performance of inter-satellite communication links and downlinks was investigated for the new Korean experimental communication system in terms of link margin, bit error rate (BER), and channel capacity. In particular, the performance of the inter-satellite links was analyzed based on the receiving apertures and the transmitting power, while that of the downlink was analyzed in terms of atmospheric turbulence conditions and transmitting power. Finally, we discussed two system parameters of receiving aperture and transmitting power to meet the three criteria of link margin, BER, and channel capacity.

ITU-R Rec. P.1546-3 Propagation Prediction model Simulator using additional transmitting parameter (송신국 파라미터를 이용한 ITU-R Rec. P.1546-3 전파예측 모델 시뮬레이터 설계)

  • Lee, Kyung-Ryang;Choi, Sung-Woong;Cha, Jae-Sang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • International Telecommunication Union(ITU), recommended a propagation prediction models that can be applied to a various propagation environments that many services have been established in the field of broadcasting and telecommunications using ITU-R. Each propagation prediction models are revised with the complement procedures of an expected difference of channel environment and prepared for a standard of a propagation prediction. In this research, it is possible to realized a practical propagation prediction in each transmitting station for a broadcasting environments of ITU-R Rec. P.1546-3 model, so called the point-to-area, using supplementary parameters of the transmitting station specification.

Design and Implementation of a Up Down Converter for Asynchronous IMT-2000 Base Station (비동기식 IMT-2000 기지국용 Up Down Converter 설계 및 제작)

  • 손병일;전석찬;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.61-64
    • /
    • 2000
  • In this paper, we design up-down converter for asynchronous IMT-2000 base station using W-CDMA(Wideband Code Division Multiple Access) technology. This up-down converter(UDC) has AGC (Automatic Gain Control), TPTL(Transmitting Power Tracing Loop), RSSI(Received Signal Strength Indicator) function. And for the cell control of BS(Base Station), breathing, blossoming, wilting function also available. This UDC has diversity structure for better performance.

  • PDF