• Title/Summary/Keyword: Transmit Diversity

Search Result 290, Processing Time 0.022 seconds

Exact and Approximate Symbol Error Probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels

  • Halima, Nadhir Ben;Boujemaa, Hatem
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.81-108
    • /
    • 2018
  • In this paper, we derive the theoretical Symbol Error Probability (SEP) of cooperative systems with best relay selection for Nakagami-m fading channels. For Amplify and Forward (AF) relaying, the selected relay offers the best instantaneous Signal to Noise Ratio (SNR) of the relaying link (source-relay-destination). In cooperative networks using Decode and Forward (DF), the selected relay offers the best instantaneous SNR of the link between the relay and the destination among the relays that have correctly decoded the transmitted information by the source. In the second part of the paper, we derive the SEP when all participating AF and DF relaying is performed. In the last part of the paper, we extend our results to cognitive radio networks where there is interference constraints : only relays that generate interference to primary receiver lower than a predefined threshold T can transmit. Both AF and DF relaying with and without relay selection are considered.

An Adaptive Detection Scheme of Differential Space-Time Block Codes for Mobiles Operating with Various Speeds in LTE Downlink Scenario (LTE 하향링크에서 단말의 이동 속도에 따른 적응적 차등 시공간블록부호 복호화 기법)

  • Kim, Deuckyu;Hwang, Jae-Gyun;Kim, Byoung-Gil;Choi, Byoung-Jo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.611-614
    • /
    • 2012
  • Space-Time Block Code (STBC) is a simple transmit diversity scheme mitigating detrimental effects of fading channel. However, STBC receivers require channel knowledge and suffer from inaccurate channel estimation. Differential Space-Time Modulation (DSTM) renders the receiver a choice of coherent detection or non-coherent detection, depending on the availability of the channel information. Based on the simulated BER performances of these two schemes over various normalized Doppler frequency scenarios using LTE-like parameters, a benefit of adaptively switching the receiver type is investigated.

  • PDF

Performance Analysis of STBC Concatenated Convolutional Code for Improvement of Transmission Reliability (STBC의 전송 신뢰성 향상을 위한 컨볼루션 코드 연계 시스템)

  • Shin, Hyun-jun;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.586-589
    • /
    • 2013
  • In this paper, the proposed scheme is STBC system combined with convolutional code to ensure the reliability of data transmission for a high rate wireless communication. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and comvolutional code, the proposed scheme can get a diversity gain of STBC and coding gain of convolutional code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. To analyze the system proposed, it was simulated by changing the constraint length of the convolutional code and the number of transmit and receive antennas of STBC.

  • PDF

Rotationally Invariant Space-Time Trellis Codes with 4-D Rectangular Constellations for High Data Rate Wireless Communications

  • Sterian, Corneliu Eugen D.;Wang, Cheng-Xiang;Johnsen, Ragnar;Patzold, Matthias
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.258-268
    • /
    • 2004
  • We demonstrate rotationally invariant space-time (ST) trellis codes with a 4-D rectangular signal constellation for data transmission over fading channels using two transmit antennas. The rotational invariance is a good property to have that may alleviate the task of the carrier phase tracking circuit in the receiver. The transmitted data stream is segmented into eight bit blocks and quadrature amplitude modulated using a 256 point 4-D signal constellation whose 2-D constituent constellation is a 16 point square constellation doubly partitioned. The 4-D signal constellation is simply the Cartesian product of the 2-D signal constellation with it-self and has 32 subsets. The partition is performed on one side into four subsets A, B, C, and D with increased minimum-squared Euclidian distance, and on the other side into four rings, where each ring includes four points of equal energy. We propose both linear and nonlinear ST trellis codes and perform simulations using an appropriate multiple-input multiple-output (MIMO) channel model. The 4-D ST codes constructed here demonstrate about the same frame error rate (FER) performance as their 2-D counterparts, having however the added value of rotational invariance.

Reverse-Ordering Scheme for BLAST-STTC Systems using Iterative Decoding (반복 복호화를 사용하는 BLAST-STTC 시스템을 위한 역순서화 기법)

  • Song Byung Min;Park Sang Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.338-343
    • /
    • 2005
  • MIMO(Multiple Input Multiple Output) systems are considered as one of the most promising systems for next generation mobile communication systems which require efficient frequency resource utilization as well as high data rate transmissions. BLAST-STTC is the MIMO system which transmits information from many of STTC encoder groups with two transmit antennas and cancels the interference from other groups in receiver. In this paper we propose a reverse-ordered iterative decoding scheme for BLAST-STTC systems which achieve full diversity gain for all groups and improve the performance of interference cancellation, and compare the error performance of the proposed scheme with general schemes.

Layered Turbo codes combined with space time codes for satellite systems (위성 시스템에서의 시공간 부호 기술과 결합된 계층적 터보 부호)

  • Kim, Young-Min;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • A layered coding scheme is one of the adaptive receiving techniques for unidirectional services such as multimedia broadcasting and multicasting services (MBMS), where we cannot utilize feedback information. The layered coding scheme can be used with hierarchical modulations by combining suitable code rates and modulation orders of each. In addition, it has been reported that hybrid and/or integrated satellite systems can effectively achieve transmit diversity gains by appropriate utilization of space time coding combined with turbo codes. This paper proposes a layered turbo coding schemes for hybrid and/or integrated satellite systems. We first introduce the system architecture and operational principle of the proposed scheme, and discuss the applicability.

An Orthogonal Multicarrier DS/CDMA System Based on Convolutional Coding (길쌈부호화를 바탕으로 한 직교 다중반송파 직접수열 부호분할 다중접속 시스템)

  • Kim, Yun-Hui;Lee, Ju-Mi;Song, Ik-Ho;Kim, Hong-Gil;Kim, Seok-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.4
    • /
    • pp.35-43
    • /
    • 2000
  • In this paper, we propose to transmit convolutionally coded DS waveforms over orthogonally overlapped subchannels. It is shown that the proposed system, the convolutionally coded orthogonal multicarrier DS/CDMA system, significantly outperforms the system using frequency diversity combining. It is also shown that the proposed system has better performance than the convolutionally coded almost non-overlapped multicarrier DS/CDMA system under the condition that the information rate and total available bandwidth are the same.

  • PDF

An Efficient STBC Scheme for a Cooperative Satellite-Terrestrial System (위성과 지상 중계 장치와의 협동 다이버시티를 위한 효율적인 STBC 방식)

  • Park, Un-Hee;Li, Jing;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.997-1005
    • /
    • 2008
  • In this paper, we propose an efficient space-time block coding (STBC) scheme in a cooperative satellite-terrestrial system. The proposed STBC scheme has code rate 1 for a 3 transmit antenna scheme. Because the channel matrix of the proposed scheme is orthogonal, we can use a simple linear decoding algorithm and also can expect improved performance over the conventional scheme. The simulation results demonstrate that the proposed scheme has improved performance for bit error rates (BER) than several conventional STBC schemes. In addition, we investigate performance simulation results by power imbalance between the terrestrial repeaters and satellite.

Performance Analysis of Underwater Communication Channel Using LDPC Codes in the MISO Channel (LDPC 부호를 이용한 MISO 채널에서 수중통신 채널 성능 분석)

  • Park, Tae-Doo;Kim, Min-Hyun;Lim, Byeong-Su;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.878-885
    • /
    • 2011
  • Due to reflect at surface of the water and limit bandwidth, it is difficult to design underwater acoustic communication systems with high-reliability and high transmission rate. Therefore the trends of underwater communication is transformed from single sensor to multiple sensor studies. However, underwater MIMO communication techniques have a high correlation value between multiple sensors on transmitters and receivers in underwater environments, it is difficult to expect space diversity gain on muli-path channels. Therefore, this paper proposed the MISO communications system with two transmit sensors and single receiver sensor, and analyzed its performance using the LDPC codes and channel compensation algorithm.

Performance of DF Protocol for Distributed Cooperative Spectrum Sensing in Cognitive Radio

  • Zou, Mingrui;Bae, Sang-Jun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.124-131
    • /
    • 2009
  • Cognitive radio has been proposed to mitigate the spectrum scarcity problem by allowing the secondary users to access the under-utilized frequency bands and opportunistically transmit. Spectrum sensing, as a key technology in cognitive radio, is required to reliably detect the presence of primary users to avoid the harmful interference. However, it would be very hard to reliably detect the presence of primary users due to the channel fading, shadowing. In this paper, we proposed a distributed cooperative spectrum sensing scheme based on conventional DF (decode-and-forward) cooperative diversity protocol. We fist consider the cooperation between two secondary users to illustrate that cooperation among secondary users can obviously increase the detection performance. We then compare the performance of DF based scheme with another conventional AF (amplify-and-forward) protocol based scheme. And it is found that the proposed scheme based on DF has a better detection performance than the one based on AF. After that, we extend the number of cooperative secondary users, and demonstrate that increasing the cooperation number can significantly improve the detection performance.