• Title/Summary/Keyword: Transmit Antenna

Search Result 401, Processing Time 0.025 seconds

The Multi-Aperture Transmit Horn Antenna for Radar Space Feeder (레이다 공간급전용 다중-개구 송신 혼 안테나)

  • 조용문;박동철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.113-121
    • /
    • 2003
  • In this paper, the transmit antenna for the space feeder used for the phased array antennas is investigated. The multi-aperture horn antenna is proposed as the transmit antenna and the characteristics are verified with the Matlab coding, HFSS of Ansoft Corp., and MWS of CST Corp., The E-plane and H-plane beam patterns of the multi-aperture horn antenna are nearly symmetrical and the sidelobe level of the I-plane beam pattern is lower than that the of general pyramidal horn antenna. The fabricated multi-aperture horn antenna is measured using the near-field measurement system. The measured results show good agreement with the simulated ones.

On the Optimal Antenna Weighting Method for Closed-Loop Transmit Antenna Diversity with Average and Peak Power Constraints (평균전력과 첨두전력 제한이 있는 폐루프 송신 안테나 다이버스티 시스템에서의 최적 안테나 가중치 방식 연구)

  • Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.694-699
    • /
    • 2007
  • We consider an optimal antenna weighting scheme for a closed-loop transmit antenna diversity system in Rayleigh fading channels. We derive a closed-form expression for the optimal transmitter weights that minimize the average bit error rate (BER) subject to fixed average and peak transmit power constraints. It is shown that the peak power limitation degrades the average BER performance more significantly as the available average power and/or the number of transmit antennas increase.

Transmit Antenna Selection for Quadrature Spatial Modulation Systems with Power Allocation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.98-108
    • /
    • 2020
  • We consider transmit antenna selection combined with power allocation for quadrature spatial modulation (QSM) systems to improve the error rate performance. The Euclidean distance-based joint optimization criterion is presented for transmit antenna selection and power allocation in QSM. It requires an exhaustive search and thus high computational complexity. Thus its reduced-complexity algorithm is proposed with a strategy of decoupling, which is employed to successively find transmit antennas and power allocation factors. First, transmit antennas are selected without considering power allocation. After selecting transmit antennas, power allocation factors are determined. Simulation results demonstrate considerable performance gains with lower complexity for transmit antenna selected QSM systems with power allocation, which can be achieved with limited rate feedback.

On the Outage Behavior of Interference Temperature Limited CR-MISO Channel

  • Kong, Hyung-Yun;Asaduzzaman, Asaduzzaman
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • This paper investigates the outage behavior of peak interference power limited cognitive radio (CR) networks with multiple transmit antennas. In CR-multi-input single-output (MISO) channel, the total transmit power is distributed over the transmitantennas. First, we use the orthogonal space-time codes (STC) to achieve the transmit diversity at CR-receiver (rx) and investigate the effect of the power distribution on the interference power received at the primary-receiver (P-rx). Then, we investigate the transmit antenna selection (TAS) scheme in which the CR system selects the best transmit antenna and allocates all the power to the selected best antenna. Two transmit antenna selection strategies are proposed depending on if feedback channel is available or not. We derive the closed form expressions of outage probability and outage capacity of all schemes with arbitrary number of transmit-antennas. We show that the proposed schemes significantly improve the outage capacity over the single antenna systems in Rayleigh fading environment. We also show that TAS based scheme outperforms the STC based scheme when peak interference power constraint is imposed on the P-rx only if a feedback channel from CR-rx to CR-transmitter is available.

Error Performance of Spatial-temporal Combining-based Spatial Multiplexing UWB Systems Using Transmit Antenna Selection

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • This paper applies transmit antenna selection algorithms to spatial-temporal combining-based spatial multiplexing (SM) ultra-wideband (UWB) systems. The employed criterion is based on the largest minimum output signal-to-noise ratio of the multiplexed streams. It is shown via simulations that the bit error rate (BER) performance of the SM UWB systems based on the two-dimensional Rake receiver is significantly improved by antenna diversity through transmit antenna selection on a log-normal multipath fading channel. When the transmit antenna diversity through antenna selection is exploited in the SM UWB systems, the BER performance of the spatial-temporal combining-based zero-forcing (ZF) receiver is also compared with that of the ZF detector followed by the Rake receiver.

Improved Downlink Performance of Transmit Adaptive Array applying Transmit Antenna Selection (적응형 송신 빔 성형 시스템의 순방향 링크 성능 향상을 위한 송신 안테나 선택 방식의 적용)

  • Ahn, Cheol-Yong;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.111-118
    • /
    • 2003
  • The transmit adaptive array requires the forward link channel information for evaluating the optimum transmit weight vector in which a feedback channel provides transmitter with the forward link channel information. The larger transmit adaptive array is, the higher required rate of feedback channel is. Therefore we consider the system that the N-transmit antenna system is expanded to the 2N-transmit antenna system, while the feedback channel is maintained as that of N-transmit antenna system. The increase of the number of antennas can produce the additional diversity gain, however the insufficient feedback bits assigned to each antenna aggravates the quantization error. In this paper, we propose the transmit antenna selection in order to improve the performance of transmit adaptive array having an insufficient feedback channel information. The effective method to transmit the weight vector is also introduced. System performances are investigated for the case of N=4 corresponding to the antenna selection diversity schemes on the flat fading channel and the multipath fading channel. The simulation results show that the proposed scheme can improve the system performance by 1 dB when the N is expanded to the 2N, while the feedback channel is restricted to that of N-transmit antenna system.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.