• Title/Summary/Keyword: Transmit/Receive Module

Search Result 54, Processing Time 0.025 seconds

A Design of X-Band Tile Type Active Transmit/Receive Module (X 대역 타일형 능동 송수신 모듈 설계)

  • Ha, Jung-Hyen;Moon, Ju-Young;Lee, Ki-Won;Nam, Byung-Chang;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1467-1474
    • /
    • 2010
  • A tile type active T/R(Transmit/Receive) module for X-band active array radar is demonstrated in this paper. Proposed tile type structure based on fuzz button solderless vertical interconnection shows wide band characteristic of about 30 % bandwidth in X-band with insertion loss of below 0.6 dB and input and output VSWR of less than 1.7. Moreover, the mismatching generally appeared in the vertical interconnection which shown wide band characteristic can also be minimized and, therefore, good gain flatness can be achieved.

T/R Module Development for X-Band Active Phased-Array Radar (능동 위상 배열 레이더용 X-대역 T/R 모듈 개발)

  • Kim, Dong-Yoon;Chong, Min-Kil;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi;Baik, Seung-Hun;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1243-1251
    • /
    • 2009
  • This paper presents design and test results of X-Band Transmit/Receive(T/R) module for active phased-array radar. Active phased array radars typically require solid state T/R modules with high output power, low noise figure, high Third Order Intercept(TOI), and sufficient gain in both transmit and receive. The output power of the module is 9 watts over a wide bandwidth. The noise figure is as low as 2.8 dB. Phase and amplitude are controlled by the 6-bit phase shifter and 5-bit attenuator, respectively. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. The module incorporates a compact digital interface, requires only three supply voltages.

Design of Miniaturized Telemetry Module for Bi-Directional Wireless Endoscopy

  • Park, H. J.;H. W. Nam;B. S. Song;J. H. Cho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.494-496
    • /
    • 2002
  • A bi-directional and multi-channel wireless telemetry capsule, 11mm in diameter, is presented that can transmit video images from inside the human body and receive a control signal from an external control unit. The proposed telemetry capsule includes transmitting and receiving antennas, a demodulator, decoder, four LEDs, and CMOS image sensor, along with their driving circuits. The receiver demodulates the received signal radiated from the external control unit. Next, the decoder receives the stream of control signals and interprets five of the binary digits as an address code. Thereafter, the remaining signal is interpreted as four bits of binary data. Consequently, the proposed telemetry module can demodulate external signals so as to control the behavior of the camera and four LEDs during the transmission of video images. The proposed telemetry capsule can simultaneously transmit a video signal and receive a control signal determining the behavior of the capsule itself. As a result, the total power consumption of the telemetry capsule can be reduced by turning off the camera power during dead time and separately controlling the LEDs for proper illumination of the intestine.

  • PDF

Implementation of Tone Control Module in Anchor System for Improved Audio Quality

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.10-21
    • /
    • 2024
  • Recently, audio systems are changing the configuration of conventional sound reinforcement (SR) systems and public address (PA) systems by using audio over IP (AoIP), a technology that can transmit and receive audio signals based on internet protocol (IP). With the advancement of IP technology, AoIP technologies are leading the audio market and various technologies are being released. In particular, audio networks and control hierarchy over peer-to-peer (Anchor) technology based on AoIP is a system that transmits and receives audio signals over a wide bandwidth without an audio mixer, creating a novel paradigm for existing audio system configurations. Anchor technology forms an audio system by connecting audio sources and output equipment with On-site audio center (OAC), a device that can transmit and receive IP. Anchor's receiving OAC is capable of receiving and mixing audio signals transmitted from different IPs, making it possible to configure a novel audio system by replacing the conventional audio mixer. However, Anchor technology does not have the ability to provide audio effects to input devices such as microphones and instruments in the audio system configuration. Due to this, when individual control of each audio source is required, there is a problem of not being able to control the input signal, and it is impossible to individually affect a specific input signal. In this paper, we implemented a tone control module that can individually control the tone of the audio source of the input device using the audio processor core in the audio system based on Anchor technology, tone control for audio sources is possible through a tone control module connected to the transmitting OAC. As a result of the study, we confirmed that OAC receives the signal from the audio source, adjusts the tone and outputs it on the tone control module. Based on this, it was possible to solve problems that occurred in Anchor technology through transmitting OAC and tone control modules. In the future, we hope that the audio system configuration using Anchor technology will become established as the standard for audio equipment.

Implementation of Data Transmission System Using PSD Sensor and Laser Diode Module (PSD 센서와 Laser를 이용한 데이터 전송 시스템 구현)

  • Kim, Myung-Hwan;Ma, Keun-Su;Lee, Jae-Deuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3016-3018
    • /
    • 2005
  • The PSD(Position Sensitive Detector) is a sensor for detecting the position of incident light. Because of its various advantages, it is used for position and angle sensing, optical range finders, laser displacement sensing, and etc. In the previous study of the position finding system, the laser tracking robot is developed. Small data rate and unidirectionality is the characteristics of data communication both DSP-based pan/tilt control board and the robot. If we can transmit data to the target using PSD sensor and laser diode module, there is no need for communication devices such as the bluetooth and wireless module. For this reason, this paper presents the new method for data transmission. Transmit data using RS-232 is modulated by a VTF(Voltage To Frequency) converter The laser diode module transmits the modulated data. And then the PSD sensor receive that data. Demodulation process is accomplished by the system which is consisted with trans-impedance amplifier, FTV(Frequency To Voltage) converter, and etc.

  • PDF

A Study on the implementation of PLCP sublayer for Frequency Hopping Wireless LAN (주파수 호핑방식 무선 LAN을 위한 PLCP 부계층 프로토콜 기능 구현 연구)

  • 이선희;기장근
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.837-840
    • /
    • 1999
  • In this paper, we design and verify the hardware circuit that performs PLCP(Physical Layer Convergence Protocol) protocol functions of physical layer in IEEE 802.11 frequency hopping WLAN(Wireless Local Area Network). Altera MAX+PLUS I $I^{〔1〕}$ is used as a design tool. The designed circuit consists of control register module to interface with upper layer, FIFO module to transmit/receive data with upper layer, TX function module, and RX function module. It is verified that the developed circuit conforms well to the IEEE 802.11 standard specification and can support both 1Mbps and 2 Mbps transmission rate by simulation. The developed circuits can be utilized for the implementation of protocol processor in wireless LAN areas.

  • PDF

A Design and Fabrication of the X-Band Transmit/Receive Module for Active Phased Array SAR Antennas (능동 위상 배열 SAR 안테나를 위한 X-대역 송수신 모듈의 설계 및 제작)

  • Chong, Min-Kil;Kim, Sang-Keun;Na, Hyung-Gi;Lee, Jong-Hwan;Yi, Dong-Woo;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1050-1060
    • /
    • 2009
  • In this paper, a X-Band T/R-module for SAR(Synthetic Aperture Radar) systems based on active phased array antennas is designed and fabricated. The T/R modules have a and width of more than 800 MHz centered at X-Band and support dual, switched polarizations. The output power of the module is 7 watts over a wide bandwidth. The noise figure is as low as 3.9 dB. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit digital attenuator, respectively. Further the fabricated T/R module has est and calibration port with directional coupler and power divider. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. RMS gain error is less than 0.8 dB max. in Rx mode, and RMS phase error is less than $4^{\circ}$ max. in Rx/Tx phase under all operating frequency band, or the T/R module meet the required electrical performance m test. This structure an be applied to active phase array SAR Antennas.

Development of Fragmentation Management Simulator for 6LoWPAN (6LoWPAN 단편화 관리 기법 시뮬레이터 개발)

  • Seo, Hyun-Gon;Han, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.191-198
    • /
    • 2008
  • 6LoWPAN (IPv6 Low-power Wireless Personal Area Network) is IPv6 packets transmission technology at Sensor network over the IEEE 802.15.4 Standard MAC and Physical layer. Adaptation layer between IP layer and MAC layer performs fragmentation and reassembly of packet for transmit IPv6 packets. RFC4944, IETF 6LoWPAN WG standard document define packet fragmentation and reassembly. In this paper, we propose the 6PASim (6LoWPAN Packet Simulator) to perform IPv6 packet fragmentation and reassembly for performance evaluation. The 6PASim consist of two parts. One is Packet_Transmit_module that makes IEEE 802.15.4 frames the IPv6 packet from upper layer, and transmit its. and the another is Packet_Receive_module that reassembles transferred frames and completes original IPv6 packets. we can evaluate frame transmit rate and amount of control message through 6PASim. The result of simulation shows the SRM (Selective Retransmission Method) scheme provider better performance than IRM (Immediate Retransmission Method) scheme.

  • PDF

Design and Implementation of the Transmit and Receive Equipments for Wide Band Signals of a Spaceborne High Resolution Synthetic Aperture Radar (위성탑재 고해상도 합성개구 레이다용 광대역 신호 송 수신장치 설계 및 제작)

  • Ka, Min-Ho;Jeon, Byung-Tae;Kim, Se-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.44-51
    • /
    • 2001
  • In general, the realization of spaceborne system is constrained by its space environment. In this paper, we suggest chirp stitching technique which generates and processes wideband radar signal with minimum hardware, design and implement transmit/receive equipments and operating programs to satisfy the requirement of this spaceborne high resolution SAR(Synthetic Aperture Radar). We apply the top down design approach to this system, and divide hardware into equipment, module and circuit levels, and software into SR(Software Requirement), AD(Architecture Design), DD(Detailed Design) and coding levels, and then extract each requirement to satisfy the wideband requirement of this spaceborne high resolution SAR. We, at first, test the hardware functions, confirm the wideband handling capability of this system with 85MHz wideband signals generated from two 42.5MHz narrow band signals, and show that this system can be used in spaceborne high resolution SARs.

  • PDF

Design and Development of 200 W TRM on-board for NEXTSat-2 X-band SAR (차세대소형위성2호의 X대역 합성 개구 레이더 탑재를 위한 200 W급 송·수신 모듈의 설계 및 개발)

  • Jeeheung Kim;Hyuntae Choi;Jungsu Lee;Tae Seong Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.487-495
    • /
    • 2022
  • This paper describes the design and development of a high-power transmit receive module(TRM) for mounting on X-band synthetic aperture radar(SAR) of the NEXTSat-2. The TRM generates a high-power pulse signal with a bandwidth of 100 MHz in the target frequency range of X-band and amplifies a low-noise on the received signal. Tx. path of the TRM has output signal level of more than 200 watts (53.01 dB), pulse droop of 0.35 dB, signal strength change of 0.04 dB during transmission signal output, and phase change of 1.7 ˚. Rx. path has noise figure of 3.99 dB and gain of 37.38 ~ 37.46 dB. It was confirmed the TRM satisfies all requirements. The TRM mounted on the NEXTSat-2 flight model(FM) which will be launched using the KSLV-II (Nuri).