• Title/Summary/Keyword: Transmission waveform

Search Result 115, Processing Time 0.029 seconds

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation (쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.831-838
    • /
    • 2016
  • The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.

An Adaptive Transmission Scheme for the Forward Links of Multicarrier CDMA Systems (여러 반송파 부호분할 다중접속 방식의 순방향에서의 적응 보냄 방식)

  • Kim, Yun-Hee;Won, Dae-Han;Song, Iick-Ho;Yoon, Seok-Ho;Park, So-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.1
    • /
    • pp.44-53
    • /
    • 2000
  • In this paper, we propose a multicarrier CDMA system with an adaptive subchannel allocation method for forward links. In the proposed system, instead of transmitting identical DS waveforms over a number of subchannels in parallel, each user's DS waveform is transmitted over the user's favorite subchannel which has the largest fading amplitude among all the subchannels. The proposed system is shown to have performance gain over the conventional multicarrier DS/CDMA system. We also investigate how the performance is influenced when the signal is not perfectly allocated into the best subchannel.

  • PDF

Hybrid TDMA and Binary CDMA System (TDMA와 Binary CDMA의 혼합 다중 접속 시스템)

  • 안호성;나성웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.527-536
    • /
    • 2004
  • A novel hybrid multiple access system, TD-BCDMA, where Binary CDMA that maintains a constant amplitude by clipping the summation of input signals multiplied by the orthogonal codes is transmitted over a TDMA frame structure, was Nosed. In every time slot of TDMA, binary CDMA modulated multiple channel signals are transmitted with the same waveform of TDMA. TD-BCDMA has all the advantages of TDMA. Flexible adjustment of the data transmission rate In demand is possible by adjusting the number of codes and time slots assigned to each user. This property was used to show an example of Ad Hoc network applications. To obtain a proper synchronization scheme for TD-BCDMA, the Receiver Operating Characteristics performance and the false alarm probability and false dismissal probability under various channel environment of two different schemes, a preamble scheme as in TDMA and a synchronization channel scheme as in CDMA were compared. It was proved that the preamble scheme is more practical and suitable than the synchronization channel scheme for the hybrid multiple access system.

Design of a low frequency, high power acoustic transducer to use in the echo sounder (어군탐지기용 저주파.고출력 음향 변환기의 설계)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • A low frequency, high power hydroacoustic transducer with 7 tonpilz piston elements assembled in a circular array suitable for marine application, such as the transmission of underwater information and the development of new fisheries resources in the deep sea zone was designed. A modified Mason's model was applied to monitor and to simulate the transducer behavior at each step during the fabrication. The in air, and in water constructed tonpilz transducer was tested experimentally and numerically by changing the size and the type of the material for head, tail and acoustic window. Also, the developed transducer was excited by pulse signals and the received waveform was analyzed. The resonance peaks in the transmitting voltage response(TVR) of a single tonpilz element without housing were observed at 11.33kHz in air and 10.93kHz in air and 10.93 kHz in water, respectively, with the overall electrical-acoustic efficiency of 43.7%. The value of TVR of single tonpilz element with aluminum housing in water was 129.87dB re 1 $\mu$Pa/V at 12.25 kHz with the frequency bandwith of 2.15 kHz and half beam angle of 30.2$^{\circ}$at -3dB.The resonance peaks in the transmitting voltage response of the 7 element circular transducer were observed at 11.50 kHz in air and 11.45 kHz in water, respectively. The value of TVR in water 144.84 dB re 1$\mu$Pa/V at 11.5kHz with the frequency bandwith of 4.25 kHz and the half beam angle of $22.3^{\circ} $ at -3dB.Reasonable agreement between the experimental measurements and the theoretical predictions for the directivity patterns, TVRs and the impedance characteristics of the designed transducer was achieved.

  • PDF

The Doping Concentration and Physical Properties Measurement of Silicon Wafer Using Terahertz Wave (테라헤르츠파를 이용한 실리콘 웨이퍼의 도핑 정도와 물리적 특성 측정에 관한 연구)

  • Park, Sung Hyeon;Oh, Gyung Hwan;Kim, Hak Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this study, a terahertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of $30^{\circ}$ were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from $10^{14}$ to $10^{18}$ in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

The Implementation of Load Resistance Measurement System using Time-Frequency Domain Reflectometry (시간-주파수 영역 반사파 계측방법을 이용한 부하 저항 측정 시스템 구현)

  • Kwak, Ki-Seok;Park, Tae-Geun;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.435-442
    • /
    • 2006
  • One of the most important topics about the safety of electrical and electronic system is the reliability of the wiring system. The Time-Frequency Domain Reflectometry(TFDR) is a state-of-the-art system for detecting and estimating of the fault on a wiring. In this paper, We've considered the load resistance measurement on a coaxial cable using TFDR in a way of expanded application. The TFDR system was built using commercial Pci extensions for Instrumentation(PXI) and LabVIEW. The proposed real time TFDR system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display part. To implement real time system, all of the parts were programmed by the LabVIEW which is one of the graphical programming languages. Using the application software implemented by the LabVIEW, we were able to design a proper reference signal which is suitable for target cable and control not only the arbitrary waveform generator in the signal generation part but alto the digital storage oscilloscope in the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we carried out load impedance measurement experiments. The experimental results showed that the proposed system are able not only to detect the location of impedance discontinuity on the cable but also to estimate the load resistance with high accuracy.

Comparison Analysis of Time and Frequency Resource of Candidate Waveforms for 5G Mobile Communications (5세대 이동통신을 위한 후보 변조기술들의 시간과 주파수 자원 비교 분석)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.987-995
    • /
    • 2016
  • One of evaluation indicators of candidate waveforms for 5G mobile communication is spectral efficiency improvement by OOB(Out of Band) power reduction technique. In this paper, time-frequency resource allocation characteristic of UFMC(Universal Filtered Multi-Carrier), FBMC(Filter Bank Multi-Carrier), and W-OFDM(Weighted Orthogonal Frequency Division Multiplexing) system is evaluated and analyzed. As simulation results, spectral efficiency characteristic of these systems have been improved according to time resource allocation. In this paper, we can confirm that each system has similar time-frequency efficiency characteristic when the number of transmission bit is same and four symbols are transmitted with the linear system condition. Also, we can conclude that FBMC system has the lowest time-frequency resource efficiency under the nonlinear condition.

High-Speed High-Resolution Terahertz Time-Domain Spectrometer (고속 고분해 테라헤르츠 시간영역 분광기)

  • Kim, Young-Chan;Kim, Ki-Bok;Yee, Dae-Su;Yi, Min-Woo;Ahn, Jae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.370-375
    • /
    • 2008
  • High-speed high-resolution terahertz time-domain spectroscopy (THz-TDS) is demonstrated using the asynchronous-opticalsampling (AOS) method. A time-domain signal with a 10-ns time window is rapidly acquired by using two femtosecond lasers with slightly different repetition frequencies to generate and detect a terahertz pulse wave, without a mechanical delay stage. The spectrum obtained by the fast Fourier transformation (FFT) of the time-domain waveform has a frequency resolution of 100 MHz. The time resolution of our spectrometer is measured using the cross-correlation method to be 278 fs. A transmission spectrum of water vapor is measured and the absorption lines are analyzed in the frequency range from 0.1 to 1.2 THz.

Design of Multi-Mode Radar Signal Processor for UAV Detection (무인기 탐지를 위한 멀티모드 레이다 신호처리 프로세서 설계)

  • Lee, Seunghyeok;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Radar systems are divided into the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar depending on the transmission waveform. In particular, the PD radar is advantageous for long-range target detection, and the FMCW radar is suitable for short-range target detection. In this paper, we present design and implementation results for a multi-mode radar signal processor (RSP) that can support both PD and FMCW radar systems to detect unmanned aerial vehicles (UAVs) at short distances as well as long distances. The proposed radar signal processor can be implemented based on Altera Cyclone-IV FPGA with 19,623 logic elements, 9,759 registers, and 25,190,400 memory bits. The logic elements and registers of the proposed radar signal processor are reduced by approximately 43% and 30%, respectively, compared to the sum of logic elements and registers of the conventional PD radar and FMCW radar signal processor.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.