• Title/Summary/Keyword: Transmission system

Search Result 9,066, Processing Time 0.063 seconds

An Analysis of Congestion Cost for Electric Power Transmission in Consideration of Uncertainty of Future Electric Power System (미래 전력 계통의 불확실성을 고려한 송전혼잡비용 분석)

  • Park, Sung Min;Kim, Sung Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • It is expected that there will be delay of scheduled transmission network reinforcement and huge investment of renewable energy resources in Korea. As transmission capacity expansion delayed, supplying power to Seoul metropolitan area will not be increased as scheduled. In addition, uncertain renewable energy out of Seoul metropolitan area can cause transmission congestion in the future power system. These two combining effects will make the difference in locational marginal prices(LMP) and congestion costs increase. In that sense, this paper will analyze how much the congestion costs for Korea power system are incurred in the future power system. Most of previous approaches to analyze the congestion costs for electric power system are based on the optimal power flow model which cannot deal with hourly variation of power system. However, this study attempted to perform the analysis using market simulation model(M-Core) which has the capability of analyzing the hourly power generation cost and power transmission capacity, and market prices by region. As a result, we can estimate the congestion costs of future power system considering the uncertainty of renewable energy and transmission capacity.

Development of the Transmission Line Design System for Overseas Projects (해외사업용 송전선로 설계시스템 개발)

  • Min, Byeong-Wook;Kim, Jong-Hwa;Choi, Seok-June;Bang, Hang-Kwon;Choi, Han-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.129-131
    • /
    • 2006
  • KEPCO constructed the first 765kV 2 circuit transmission line in the world with its home grown technologies. Through this 765kV transmission system project, KEPCO accumulated experience and technologies related to the 765 kV power system. Based on the successful completion of the 765kV transmission project, KEPCO is conducting overseas business by using its abundant experience and know-how. In particular, KEPCO developed the training course for power system, called the ATT (Advanced Transmission Technology) training courses for overseas business, especially for developing countries. Therefore, KEPCO developed the "Transmission line design system for overseas projects". This system supports the calculation of wind pressure load, tower design, wire selection, insulation design, etc. by applying the meteorological data of foreign countries and design standards. And this system is applied to the training program so that the trainees can design the optimal transmission line for their own countries.

  • PDF

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

Dynamic Characteristics of Automatic Transmission System Due to the Change of Planetary Gear Ratio (자동변속기내 유성기어비 변화에 의한 동력전달계의 동적특성)

  • 박영일;김영석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.120-127
    • /
    • 1998
  • In this study the dynamic characteristics of automatic transmission system due to the change of the planetary gear ratio is studied. To study the power flow and shift quality for power transmission the simulation program is developed using the modeling and analysis technique. The results from this study will be used in designing the basic structure of automatic transmission using planetary gear system.

  • PDF

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

A Study on Probabilistic Reliability Evaluation Considering Transmission System :TRELSS and TranRel (송전계통을 고려한 확률론적 신뢰도 평가에 관한 연구 : TRELSS and TranRel)

  • 최재석;강성록;트란트롱틴;전동훈;문승필;추진부
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.43-55
    • /
    • 2004
  • This paper presents a study on evaluating the reliability indices considering a transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. This paper introduces features and operation modes of the Transmission Reliability Evaluation for Large-Scale Systems(TRELSS) Version 6.0, a commercial program made in EPRI, and TranRel-I V3.2, a educational program made in GSNU(GyeongSang National University) for assessing reliability indices of composite power system. The packages access not only bulk but also bus indices for reliability evaluation of composite powers system. The practicality, effectiveness and future works of this methodology are illustrated by demonstrations of two case studies of modified IEEE 25 buses reliability test system using TRELSS and TranRel-I and a brief case study for the KEPCO size system using TranRel-II made in GSNU.

Study on resonant frequency tracking for contactless power system using multiple primary winding contactless transformer (다중일차권선 비접촉변압기를 이용한 비접촉 전원시스템의 공진주파수 추적에 관한 연구)

  • Kim, Yoon-Ho;Rho, Sung-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.182-188
    • /
    • 2006
  • Contactless power system is base on power transmission by magnetic force. The transformer loss is large because it separated with the gap. Also the system has unstable factor, since the parameters in the secondary can vary with the system movement. This paper proposes light train power transmission system using contactless transformer with multiple primary winding. To increase the system efficiency and to obtain the stable power transmission to the dynamic load, a resonant inverter is adopted. The proposed system was verified by the simulation using Spice and Maxwell. The designed contactless power transmission system is implemented for 5[kW] class and experimental results are discussed.

5.8GHz 25W Microwave Wireless Power Transmission System Development and Measurement (5.8GHz 25W 무선전력전송 시스템 개발 및 측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2019
  • In this paper, 5.8GHz 25W microwave wireless power transmission system was developed. The transmission system is composed of a signal generator, a 1W drive amplifier, a 25W power amplifier, and a circularly polarized transmission antenna. The receiving system was fabricated with an integrated receiver that combines a circularly polarized receiving antenna, a pass band filter, and an RF-DC converter. And a multi-integrated receiver had twelve parts, including an integrated receiver. Under the conditions, voltage and current were measured for the system at 5cm intervals from a minimum distance of 5cm to a maximum distance of 80cm. The power was calculated for the system. The results of the system are shown in tables and graphs. The power decreases with distance, but the power does not drop sharply due to a multi-integrated receiver.

Force Control of a Pneumatic Driving System With a Long Transmission Line (전달관로를 고려한 공기압 구동장치의 힘 제어에 관한 연구)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.8-13
    • /
    • 2011
  • In the present study, a robust controller has been designed to control force for a pneumatic driving system considering the effect of a transmission line. Transfer characteristics of pneumatic transmission line should be changed according to the velocity of the air going through the transmission line. The designed controller is composed of two parts. The one is a feedback controller, which is composed of a stabilizing filter, a compensating filter of modelling error and a nominal model of the force control system, to compensate the influence of transmission line and improve the feedback characteristics of the control system, and, the other is a feedforward controller to achieve the control performance. Control results with the designed controller show that the robustness and performance of the control system are improved compared to the control results with a fixed gain controller.

System Phase Noise Spectrum of the Transmission and Receiving System for COMS Sensor Data (통신해양기상위성 센서 데이터 송수신 시스템의 시스템 위상 잡음 스펙트럼)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1247-1253
    • /
    • 2007
  • The system phase noise spectrum distribution for COMS sensor data transmitter and receiver system was proposed in this paper. On the basis of the analyzed design parameter to reduce the phase noise effect in a receiver, the optimal system phase noise were proposed for raw, IRIT and HRIT data transmission that are sensor data, respectively. The proposed system phase noise provides the qualified transmission performance of sensor data and reduces the performance degradation due to phase noise generating in the transmission channel. Also the system phase noise spectrums are utilized in the design of frequency generation source for sensor data transmission and receiver system.