• Title/Summary/Keyword: Transmission coefficient

Search Result 727, Processing Time 0.028 seconds

A Study on the Acoustical Characteristics of Curtain Fabrics (Part 2) -by Transmission Coefficient- (Curtain 감의 음향특성에 관한 연구(제2보) -투과율을 중심으로-)

  • Cho Hynn Hok;Chung Un Ja;Kang Kyung Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 1982
  • Succeeding to Report 1, to compare folded curtain fabrics with curtain fabrics, the sound pressure level (SPL) of folded curtain fabrics were measured by sound level meter. Transmission coefficient was calculated by the ratio of incidence sound intensity and transmission sound intensity. The relationship between these values and factors (drape coefficient, porosity) relating to the structure of curtain fabrics were investigated experimentally. The following results were obtained: 1. The transmission coefficient by ratio of sound pressure level was lower than that by ratio of sound intensity. 2. In folded curtain fabrics, difference of SPL was smaller and transmission coefficient generally decreased. 3. The relation between the porosity and transmission coefficient of curtain fabrics is given as plus correlation.

  • PDF

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

A Study on the Change of Heat Transmission Coefficient According to the Degree of Windows Slope (창의 경사도에 따른 열관류율 변화에 관한 연구)

  • 황하진;이경희
    • Journal of the Korean housing association
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2001
  • This study investigated the heat transmission coefficient through the experiment that the skylight, slope window of 60 degree and 30 degree consisted of pair glass and the double window of external window and internal window paper were suitable for heat insulation. As the result of experiment, the heat transmission coefficient of slope window was 1.06 times in the 60 degree, 1.18 times in the 30 degree and 1.31 times in the skylight as a standard lateral window. The heat transmission coefficient in the double window of external window and internal window paper was 3.017$\textrm{㎉}$/$\textrm{m}^2$.hr.$^{\cire}C$. The slope window was not suitable for the prescription by the increase of the heat transmission coefficient, so the user must pay attention to the treatment. This study investigated only the slope window of 12mm and 16mm pair glass and the double window of external window and internal window paper, study on the various pattern of window must be achived in a future.

  • PDF

FRICTION CHARACTERISTICS OF A PAPER-BASED FRICTION MATERIAL

  • Gao, H.;Barber, G.-C.;Chu, H.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.171-176
    • /
    • 2002
  • A bench test set-up is employed to simulate the friction characteristics of a paper-based friction material operating against a steel plate. Dry friction tests are run as well as tests with transmission fluids. Glazed friction material produces a negative coefficient of friction versus sliding velocity (f-v) curve for both dry friction and lubrication with transmission fluids. At low sliding speeds, the coefficient of friction when operating in transmission fluids for glazed friction materials is greater than that under dry friction. An appreciable negative f-v slope occurs at low sliding speeds for glazed friction materials when running with the transmission fluid. The friction material after running in produces a constant f-v curve under dry friction and a negative slope when lubricated with transmission fluid. At low sliding speeds, the coefficient of friction of the run-in friction material is lower than that of the glazed wet material. On the other hand, the run-in friction material has a larger friction coefficient than does the glazed friction material at higher sliding speeds.

On the Transmission Loss Measurement System (전달손실계수 측정 시스템에 대하여)

  • Ryu, Yun-Seon;Kim, Yoon-Seok;Callec, Philippe
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.166-171
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

Optimum Distance between Multiple Submerged Breakwaters for Wave Screening Performance Enhancement (파랑 차단 성능 향상을 위한 다열 잠제 사이의 최적 간격에 대한 연구)

  • Cho, Won-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.82-87
    • /
    • 2006
  • Numerical analysis is performed on the wave transmission coefficient of various crown widths of the double-submerged breakwater and the triple-submerged breakwater, varying the distance between submerged breakwaters. The finite element method is used, and the fluid motion is considered as linearized two-dimensional potential flow. In case of the double- and triple-submerged breakwaters, as the width of submerged breakwater increases, the minimum wave transmission coefficient decreases and the wave period at which the minimum wave transmission coefficient occurs moves to a longer wave period the distance between submerged breakwaters at which the minimum wave transmission coefficient occurs becomes larger.

On the Transmission Loss Measurement System (전달손실계수 측정시스템에 대하여)

  • Yunseon RYU;Yoon-Seok KIM;Philippe CALLEC
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.1-323
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system usiong 4-microphone impedance tube is proposed, based on the idea calculating the full transger matrix of the acoustical sample to test. The theoretical backgroung and measurement system are introduced, and finally the measurement results are verified.

  • PDF

On the Transmission Loss Measurement System(Part II) (전달손실계수 측정 시스템에 대하여(Part II))

  • 김윤석;류윤선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.658-661
    • /
    • 2003
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

Analysis of Wave Transmission Characteristics on the TTP Submerged Breakwater Using a Parabolic-Type Linear Wave Deformation Model

  • Jeong, Jin-Hwan;Kim, Jin-Hoon;Lee, Jung-Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • Owing to the advantages of assuring the best views and seawater exchange, submerged breakwaters have been widely installed along the eastern coast of Korea in recent years. It significantly contributes to promoting the advancement of shorelines by partially inhibiting incident wave energy. Observations were carried out by a pressure-type wave gauge in the Bongpo Beach to evaluate the coefficients of wave transmission via a submerged breakwater, and the results obtained were compared with those of existing conventional equations on the transmission coefficient derived from hydraulic experiments. After reviewing the existing equations, we proposed a transmission coefficient equation in terms of an error function. Although it exhibited robust relationships with the crest height and breaking coefficient, deviations from the observed data were evident and considered to be triggered by the difference in the incident wave climate. Therefore, in this study, we conducted a numerical experiment to verify the influence of wave period on the coefficients of wave transmission, in which we adopted a parabolic-type mild-slope equation model. Consequently, the deviation from calculated results appears to practically cover all deviation range in the observed data. The wave period and direction of the incident wave increased, the transmission coefficient decreased, and the wave direction was determined to demonstrate a relatively significant influence on the transmission coefficient. It was inferred that this numerical study is expected to be used practically in evaluating the design achievement of the submerged breakwater, which is adopted as a countermeasure to coastal beach erosion.

A Study on the Acoustical characteristics of Curtain Fabrics (part 1) -by Constructional Characteristics of Curtain Fabrics- (Curtain감의 음향특성에 관한 연구(제1보) -Curtain감의 구성특성을 중심으로-)

  • Chung Un Ja;Kang Kyung Ja;Cho Hyun Hok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.3 no.2
    • /
    • pp.23-27
    • /
    • 1979
  • The normal transmission characteristics of curtain fabrics were measured by sound level meter. Transmission coefficient was calculated by difference of incidence SPL and transmission SPL. The relation between this value and factors relating to the structure of curtain fabrics were investigated. The results of experiment were shown follow; 1. Transmission coefficients(approximately over $95\%$) of sound in curtain fabrics differ from according to the frequency. It was lower in 500Hz frequency, on the other hand, higher in 400, 640. 1000Hz frequency. It had a tendency to frequency among the samples. 2. The greater cover factor of sample was, the smaller the transmission coefficient of sound was. It was not influenced by thickness. 3. Air permeability was increased as the transmission coefficient of sound were greater. (correl. ation coefficient=0.83) 4. In the case of special single cloth weave(special honeycomb weave), there sometimes took place that transmission SPL was greater than incidence SPL.

  • PDF