• Title/Summary/Keyword: Transmission X-ray

Search Result 1,287, Processing Time 0.029 seconds

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

Enhanced Electrochemical Properties of Surface Modified LiMn2O4 by Li-Fe Composites for Rechargeable Lithium Ion Batteries

  • Shi, Jin-Yi;Yi, Cheol-Woo;Liang, Lianhua;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • The surface modified $LiMn_2O_4$ materials with Li-Fe composites were prepared by a sol-gel method to improve the electrochemical performance of $LiMn_2O_4$ and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM)-EDS. XRD results indicate that all the samples (modified and pristine samples) have cubic spinel structures, and XRD, XPS, and TEM-EDS data reveal the formation of $Li(Li_xFe_xMn_{2-2x})O_4$ solid solution on the surface of particles. For the electrochemical properties, the modified material demonstrated dramatically enhanced reversibility and stability even at elevated temperature. These improvements are attributed to the formation of the solid solution, and thus-formed solid solution phase on the surface of $LiMn_2O_4$ particle reduces the dissolution of Mn ion and suppresses the Jahn-Teller effect.

Structural properties of GeSi/Si heterojunction compound semiconductor films by using SPE (SPE법을 통해 형성된 $Ge_xSi_{1-x}/Si$이종접합 화합물 반도체의 결정분석)

  • 안병열;서정훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.713-719
    • /
    • 2000
  • In order to Prepare the$Ge_xSi_{1-x}/Si$(111) heterosructure by solid phase epitaxy (SPE), about 1000A of Au and about 1000A Ge were sequentially deposited on the Si(111) substrate. The resulting Ge/Au/Si(111) samples were isochronically annealed in the high vacuum condition. The behaviors of Au and Ge during thermal annealing and the structural Properties of $Ge_xSi_{1-x}$ films were characterized by Auger electron spectroscopy (AES), X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). The a-Ge/Au/Si(111) structure was converted to the Au/GeSi/Si(111) structure. Defects such as stacking faults, point defects and dislocations were found at the GeXSil-X(111) interface, but the film was grown epitaxially with the matching face relationship of $Ge_xSi_{1-x}/$(111)/Si(111). Twin crystals were also found in the $Ge_xSi_{1-x}/$(111) matrix.

  • PDF

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.

Synthesis of Silver Nanocrystallites by a New Thermal Decomposition Method and Their Characterization

  • Lee, Don-Keun;Kang, Young-Soo
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.252-256
    • /
    • 2004
  • We formed silver nanocrystallites by the thermal decomposition of a $Ag^{+1}$-oleate complex, which was prepared by a reaction with $AgNO_{3}$ and sodium oleate in a water solution. The resulting monodispersed silver nanocrystallites were produced by controlling the temperature (290$^{\circ}$C). Transmission electron microscopic (TEM) images of the particles showed a 2-dimensional assembly of the particles with a diameter of $9.5{\pm}0.7nm$, demonstrating the uniformity of these nanocrystallites. An energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanocrystallites showed the highly crystalline nature of the silver structure. We analyzed the decomposition of the $Ag^{+1}$-oleate complex using a Thermo Gravimetric Analyzer (TGA) and observed the crystallization process using XRD.

  • PDF

Synthesis of Cobalt-Iron Prussian Blue Analogues Nanotubes by CTAB Soft-Template Method

  • Liu, Peng;Liang, Chuanghui;Xu, Jianfeng;Fang, Jian;Zhao, Jihua;Shen, Weiguo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1336-1338
    • /
    • 2010
  • Three cobalt-iron Prussian Blue Analogues (PBAs) nanotubes contained with different alkali metal cations of K, Rb or Cs, respectively, were prepared by using cetyltrimethylammonium bromide (CTAB)/ethanol-water micelles as soft templates. The products were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron micrograph (SEM), which confirmed the composition of the substances and their unique nanotube structures. Furthermore, the formation mechanism of the PBAs nanotubes was discussed and provided useful insight for further synthesis of nanotubes of other Prussian blue analogues.

Fabrication of Single Crystal Poly (3,4-ethylenedioxythiophene) Nanowire Arrays by Vapor Phase Polymerization with Liquid-bridge-mediated Nanotransfer Molding

  • Lee, Gi-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.372-372
    • /
    • 2012
  • We have studied a fabrication of Poly (3,4-ethylenedioxythiophene) (PEDOT) wire arrays and structures with various feature sizes from hundreds micrometers to tens nanometers. PEDOT is well-known as a conducting material, can be grown by a vapor pressure polymerization (VPP) method. The VPP technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract

  • Nagajyothi, P.C.;Lee, Seong-Eon;An, Minh;Lee, Kap-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2609-2612
    • /
    • 2012
  • A simple green method was developed for rapid synthesis of silver and gold nanoparticles (AgNPs and AuNPs) has been reported using Lonicera japonica flower extract as a reducing and a capping agent. AgNPs and AuNPs were carried out at $70^{\circ}C$. The successful formation of AgNPs and AuNPs have been confirmed by UV-Vis spectro photometer, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray Analysis (EDAX), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). To our knowledge, this is the first report where Lonicera japonica flower was found to be a suitable plant source for the green synthesis of AgNPs and AuNPs.

Photocatalytic Degradation of Methylene Blue in Presence of Graphene Oxide/TiO2 Nanocomposites

  • Kim, Sung Phil;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2660-2664
    • /
    • 2014
  • A simple method of depositing titanium dioxide ($TiO_2$) nanoparticles onto graphene oxide (GO) as a catalytic support was devised for photocatalytic degradation of methylene blue (MB). Thiol groups were utilized as linkers to secure the $TiO_2$ nanoparticles. The resultant GO-supported $TiO_2$ (GO-$TiO_2$) sample was characterized by transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS), and X-ray photoelectron spectroscopy (XPS) measurements, revealing that the anatase $TiO_2$ nanoparticles had effectively anchored to the GO surface. In the photodegradation of MB, GO-$TiO_2$ exhibited remarkably enhanced photocatalytic efficiency compared with thiolated GO and pure $TiO_2$ nanoparticles. Moreover, after five-cycle photodegradation experiment, no obvious deactivation was observed. The overall results showed that thiolated GO provides a good support substrate and, thereby, enhances the photodegradation effectiveness of the composite photocatalyst.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF