Synthesis of Silver Nanocrystallites by a New Thermal Decomposition Method and Their Characterization

  • Received : 2003.05.14
  • Published : 2004.06.30

Abstract

We formed silver nanocrystallites by the thermal decomposition of a $Ag^{+1}$-oleate complex, which was prepared by a reaction with $AgNO_{3}$ and sodium oleate in a water solution. The resulting monodispersed silver nanocrystallites were produced by controlling the temperature (290$^{\circ}$C). Transmission electron microscopic (TEM) images of the particles showed a 2-dimensional assembly of the particles with a diameter of $9.5{\pm}0.7nm$, demonstrating the uniformity of these nanocrystallites. An energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanocrystallites showed the highly crystalline nature of the silver structure. We analyzed the decomposition of the $Ag^{+1}$-oleate complex using a Thermo Gravimetric Analyzer (TGA) and observed the crystallization process using XRD.

Keywords

References

  1. Top. Curr. Chem. v.143 Mechanisms of Reactions on Colloidal Microelectrodes and Size Quantification Effects Henglein, A.
  2. Progress in Polymer Science v.22 no.6 Nonlinear Optics and Polymer Physics Ghebremichael, F.;Kuzyk, M.G.;Lackritz, H.S.
  3. Nature v.370 Light Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer Colvin, V.L.;Schlamp, M.C.;Alivisatos, A.P.
  4. Science v.271 Nanocrystals and Quantum Dots Alivisatos, A.P.;Semiconductor, C.
  5. Science v.277 Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal Insulator Transition Collier, C.P.;Saykally, R.J.;Shang, J.J.;Henrichs, S.E.;Heath, J.R.
  6. Langmuir v.18 Suspensive Electrode Formation in Pulsed Sonoelectrochemical Synthesis of Silver Nanoparticles Socol, Y.;Abramson, O.;Gedanken, A.;Meshorer, Y.;Berenstein, L.;Zaban, A.
  7. Chem. Mater. v.10 Colloidal Silver Nanoparticles: Photochemical Preparation and Interaction with O2, CCl3, and Some Metal Ions Henglein, A.
  8. J. Chem. Eng. Japan v.29 no.3 Mechanism of Formation of Silver Halide Ultrafine Particles in Reverse Micellar Systems Sato, H.;Hirat, T.;Komasawa, I.
  9. ETRI J. v.25 no.6 Controlled Growth of Layered Silver Stearate on 2D and 3D Surfaces Lee, S.J.;Han, S.W.;Kim, K.
  10. Thin Solid Films v.327-329 Two-Dimensional Array of Silver Nanoparticles Abe, K.;Hanada, T.;Yoshida, Y.;Tanigaki, N.;Takiguchi, H.;Nagasawa, H.;Nakamoto, M.;Yamaguchi, T.;Yase, K.
  11. Particle Growth in Suspensions Smith, A.
  12. J. Chem. Phys. v.19 The Growth of Uniform Colloidal Dispersions Reiss, H.
  13. Chem. Soc. Rev. v.27 Self-Assembly of Single Electron Transistors and Related Devices Feldheim, L.;Keating, C.D.
  14. Physics B v.299 Electrical Transport Studies of Ag Nanocrystallites Embedded in Glass Matrix Magudapathy, P.;Gangopadhyay, P.;Panigrahi, B.K.;Nair, K.G.M.;Dhara, S.
  15. J. Phys. Chem. v.100 Unusual Extinction Spectra of Nanometer-sized Silver Particles Arranged in Twodimensional Arrays George, C.;Konstantin, S.;Therese, M.C.
  16. Langmuir v.17 Growth of Silver Colloidal Particles Obtained by Citrate Reduction to Increase the Raman Enhancement Factor Rivas, L.;Sanchez-Cortes, S.;Garcia-Ramos, J.V.;Morcillo, G.