• Title/Summary/Keyword: Transmission Properties

Search Result 1,879, Processing Time 0.036 seconds

A Study on the Properties of Semiconducting Materials with contents of Carbon Nanotube in Power Cable (전력케이블에서 탄소나노튜브 함량에 따른 반도전층 재료의 특성 연구)

  • Yang, Jong-Seok;Shin, Dong-Hoon;Lee, Kyoung-Yong;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.571-576
    • /
    • 2007
  • In this paper, we have investigated chemical, mechanical and structural properties by changing the content of carbon nanotube, Which is a component part of semiconductive shield in underground power transmission cable. The multi luminescence spectrometer MLA-GOLDS was used to investigate chemical properties of specimens. Also, the density meter EW-200SG was used to investigate the mechanical properties of specimens, and the FE-SEM S-4300 in Hitachi was used for dispersion of CNT(Carbon nanotube). As a result, the cl intensity, which show the effect of oxidation, was decreased by CNT of 1 [wt%], and the density of semiconductive shield materials with CNT and EEA(Ethylene Ethyl Acrylate) is lower than that for commercial semiconductive shield materials. Also, the properties of dispersion showed an increase according to an increase in the ratio of CNT, and the properties were the best at 5 wt%. Therefore, excellent chemical, mechanical and structural properties can be improved with the small amount of CNT.

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Comparison of the Properties of Poly(butylene terephthalate) Nanocomposite Fibers with Different Organoclays

  • Kim, Jeong-Cheol;Chang, Jin-Hae
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.449-458
    • /
    • 2007
  • The aims of this study were to investigate the intercalation of polymer chains with organoclays and improve the thermo-mechanical properties of poly(butylene terephthalate) (PBT) hybrids by comparing PBT hybrids synthesized using two different organoclays. The organoclays; dodecyltriphenylphosphonium-montmorillonite ($C_{12}PPh-MMT$) and dodecyltriphenylphosphonium-mica ($C_{12}PPh-Mica$), were used to fabricate the PBT hybrid fibers. Variations in the properties of the hybrid fibers with the organoclays within the polymer matrix, as well as the draw ratio (DR), are discussed. The thermo-mechanical properties and morphologies of the PBT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, electron microscopy and mechanical tensile properties analysis. The nanostructures of the hybrid fibers were determined using both scanning and transmission electron microscopies, which showed some of the clay layers to be well dispersed within the matrix polymer, although some clustered or agglomerated particles were also detected. The thermal properties of the hybrid fibers were found to be better than those of the pure PBT fibers at a DR = 1. The tensile mechanical properties of the $C_{12}PPh-MMT$ hybrid fibers were found to worsen with increasing DR. However, the initial moduli of the $C_{12}PPh-Mica$ hybrid fibers were found to slightly increase on increasing the DR from 1 to 18.

Implementation of Adaptive Transmission Middleware for Video Streaming (비디오 스트리밍을 위한 적응적 전송 미들웨어의 구현)

  • 김영주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.637-644
    • /
    • 2004
  • This paper proposed and implemented the adaptive transmission middleware for video streaming, which is able to support the adaptive transmission of video data to the fluctuating changes of network environment in the packet-based network and the properties of transmitted video data. The adaptive transmission middleware is made up SR-RTP-based transfer module and TFRC(TCP Friendly Rate Control)-based transfer-rate control module. The SR-RTP-based transfer module supports RTP-based real-time transfer of video data and packet retransmission scheme retransmitting the high-priority packets selectively in the damaged video data to reduce the error induced by the packet loss. Sharing the transmission bandwidth of network with the TCP-based data transfer, the TFRC-based transfer-rate control module controls the transfer rate of video data according to the most allowable transmission bandwidth in the network, so that the transfer rate is controlled adaptively to the fluctuating changes of transmission bandwidth. This paper, for the experiment, applied the adaptive transmission middleware to video streaming in the external Internet environment, and analyzed the effective frame transfer rate and the degree of the streaming jitter to evaluate the performance of packet-loss recovery and adaptive transfer rate control. In the external Internet environment where the packet-loss rate is high a bit, the relatively high streaming performance was showed compared with the case that didn't apply the adaptive transmission middleware.

The Monitoring Study of Exchange Cycle of Automatic Transmission Fluid (자동변속기유(ATF) 교환주기 모니터링 연구)

  • Lim, Young-Kwan;Jung, Choong-Sub;Lee, Jeong-Min;Han, Kwan-Wook;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • Automatic transmission fluid (ATF) is used as an automatic transmission in the vehicle or as a characterized fluid for automatic transmission. Recently, vehicle manufacturers usually guarantee for changing fluids over 80000~100000 km mileage or no exchange. However, most drivers usually change ATF below every 50000 km driving distance when driving in Republic of Korea according to a survey from the Korea Institute of Petroleum Management which can cause both a serious environmental contamination by the used ATF and an increase in the cost of driving. In this study, various physical properties such as flash point, pour point, kinematic viscosity, dynamic viscosity at low temperature, total acid number and four-ball test were investigated for both fresh ATF and used ATF after the actual vehicle driving distance of 50000 km and 100000 km. It was shown that most physical properties were suitable for the specification of ATF, but the foam characteristics of the used oil after running 100000 km was unsuitable for the specification of fresh ATF. Therefore, the exchange cycle of ATF every 80000~100000 km driving distance is recommended considering great positive contributions to preventing environmental pollution and reducing driving cost.

Sound Insulation Properties of Polymer Soundproof Panels (폴리머 계열 방음패널의 차음특성 비교 분석)

  • Lee, Woo-Mi;Lee, Ju Haeng;Son, Jin-Hee;Kim, Il-Ho;Park, Jae-Roh;Kim, Kwang Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.592-597
    • /
    • 2013
  • It is widely known that the sound insulation of soundproof panel is highly correlated to two factors, surface density of material and the frequency of noise. Accordingly, the character of traffic noise released in actual situation is important requisite for determining thickness to determine surface density and material of soundproof panel. This present study selected polymer panel with advantage of light weight and workability and evaluates according to frequency of traffic noise. Polypropylene (PP) and high-density polyethylene (HDPE) were selected as subjects based on economic valuation and efficiency. The sound transmission loss of selected polymer panels were compared with the currently used panels such as polycarbonate (PC) and polymethyl methacrylate (PMMA) depending on thickness and materials. As a result, PC showed the highest sound transmission loss followed by PMMA, HDPE, and PP in range of mass law. In terms of acoustic performance on thickness, the transmission loss increased with thickness of soundproof panel meanwhile coincidence dip was observed in lower frequency where had reduced transmission loss. Therefore, it is suggested that after determining target frequency, the kind of materials and thickness of soundproof panel need to be designed so that traffic noise can be more efficiently reduced.

A Study on the Convergent Change Revitalization of Paradigm for Intangible Cultural Heritage Transmission Support Policy (무형문화유산 전승지원 정책 패러다임의 융합적 변화에 관한 활성화 방안 연구)

  • Jeon, Chil-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.441-447
    • /
    • 2018
  • Korea has been designated as a National Intangible Cultural Heritage with outstanding value among intangible cultural heritage. We have supported various exhibitions and performance activities, and the Intangible Cultural Heritage Public Events. However, in recent years, more diverse policies have been pursued in order to revitalize transmission activities and the State is leading the Completion examination system. In order to improve the utilization of crafts, we introduced a Craft Bank System. In addition, to increase the marketability of crafts, we have implemented the certification system for crafts. For the diversity of transmission activities, we are promoting the Transmission Education School System. In order to fuse traditional activities, the Intangible Cultural Heritage Exhibition is being held and the World Heritage Forum is being pursued. In this study, we analyze various policies of the new intangible cultural heritage and investigate the problems and seek ways to improve them.

TEMPERATURE TRANSMISSION OF PAC UNIT THROUGH DENTIN (상아질을 통한 플라즈마 아크 광중합기의 온도 전달)

  • Park, Ho-Won;Kim, Ji-Hun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.707-714
    • /
    • 2003
  • Plasma Arc Curing(PAC) units operate at relatively high intensity and claimed to result in optimum properties of composite resin in a short curing time, so the interest of pediatric dentists about PAC units have been increased recently. But PAC units used for polymerizing restorative resins produce heat during operation. The purpose of this study was to evaluate temperature transmission through dentin of various depths using two types of PAC units(Flipo, Q-Lux plasma 100). The results from the present study can be summarized as follows : 1. When PAC be used continuously, temperature on tip was increased as curing times, and Q-Lux showed greater temperature rising(p<0.001). 2. Compared temperature transmission as dentin depth, temperature rising rate was decreased as dentin thickened(0.5, 1.0, 1.5, 2.0mm)(p<0.05). 3. Compared temperature transmission as resin depth, temperature rising rate was also decreased as resin thickened(1.0, 2.0mm)(p<0.05).

  • PDF

A Study on the Optical Receiver System for Digital Transmission System (디지털 전송 시스템을 위한 광 수신시스템에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4462-4466
    • /
    • 2013
  • In optical system, the signal and additive noise for statistical properties of a variety of ways to evaluate the performance of the system is essential for the optimization. In this paper, performance analysis of spectrum-sliced optical system in the optical pre-amplifier in the receiver the received signal by including the error limits for the bit that is, the bit error rate (BER: Bit Error Rate) required to maintain the average optical power represents the number of photons per bit is included in this paper to digital form, noticeable signal the receiver to calculate the sensitivity of the method for the calculation was performed. The general strength of the transmission of the modulated signal and digital signal transmission was required for the comparison of optical power. As shown in Figure 3, the general strength of the digital signal transmission system for transmitting a modulated signal compared with the case is improved by at least 10dB.

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.