Comparison of the Properties of Poly(butylene terephthalate) Nanocomposite Fibers with Different Organoclays

  • Kim, Jeong-Cheol (Gwangju R&D Center, Korea Institute of Industrial Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • Published : 2007.08.31

Abstract

The aims of this study were to investigate the intercalation of polymer chains with organoclays and improve the thermo-mechanical properties of poly(butylene terephthalate) (PBT) hybrids by comparing PBT hybrids synthesized using two different organoclays. The organoclays; dodecyltriphenylphosphonium-montmorillonite ($C_{12}PPh-MMT$) and dodecyltriphenylphosphonium-mica ($C_{12}PPh-Mica$), were used to fabricate the PBT hybrid fibers. Variations in the properties of the hybrid fibers with the organoclays within the polymer matrix, as well as the draw ratio (DR), are discussed. The thermo-mechanical properties and morphologies of the PBT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, electron microscopy and mechanical tensile properties analysis. The nanostructures of the hybrid fibers were determined using both scanning and transmission electron microscopies, which showed some of the clay layers to be well dispersed within the matrix polymer, although some clustered or agglomerated particles were also detected. The thermal properties of the hybrid fibers were found to be better than those of the pure PBT fibers at a DR = 1. The tensile mechanical properties of the $C_{12}PPh-MMT$ hybrid fibers were found to worsen with increasing DR. However, the initial moduli of the $C_{12}PPh-Mica$ hybrid fibers were found to slightly increase on increasing the DR from 1 to 18.

Keywords

References

  1. A. Nogales, G. Broza, Z. Roslaniec, K. Schulte, I. Syics, and B. S. Hsiao, Macromolecules, 37, 7669 (2004)
  2. D. Wu, C. Zhou, W. Yu, and X. Fan, J. Polym. Sci.; Part B: Polym. Phys., 43, 2807 (2005)
  3. J.-H. Chang and R. J. Farris, Polym. J., 27, 780 (1995) https://doi.org/10.1295/polymj.27.780
  4. J. M. Park and Y. H. Park, Macromol. Res., 13, 128 (2005)
  5. J. Y. Kim, S. W. Kang, and S. H. Kim, Macromol. Res., 13, 19 (2005)
  6. G. Lagaly, Appl. Clay. Sci., 15, 1 (1999)
  7. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Appl. Polym. Sci., 5, 119 (1995)
  8. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci.; Part A: Polym. Chem., 31, 2493 (1993)
  9. E. P. Giannelis, Adv. Mater., 8, 29 (1996)
  10. J.-H. Chang, B. S. Seo, and D. H. Hwang, Polymer, 43, 2969 (2002)
  11. K. Yano, A. Usuki, and A. Okada, J. Polym. Sci.; Part A: Polym. Chem., 35, 2289 (1997)
  12. J. M. Garcia-Martinez, O. Laguna, S. Areso, and E. P. Collar J. Polym. Sci.; Part B: Polym. Phys., 38, 1564 (2000)
  13. S. H. Hwang, S. W. Paeng, J. Y. Kim, and W. Huh, Polym. Bull., 49, 329 (2003) https://doi.org/10.1007/s00289-002-0111-2
  14. D. Wang, J. Zhu, Q. Yao, and C. A. Wilkie, Chem. Mater., 14, 3837 (2002)
  15. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 12, 11 (1999)
  16. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004)
  17. J.-H. Chang and M. K. Mun, J. Appl. Polym. Sci., 100, 1247 (2006)
  18. S. H. Hsiao, G.. S. Liou, and L. M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<1::AID-APP1067>3.0.CO;2-Z
  19. C. Zilig, R. Mulhaupt, and J. Finter, Macromol. Chem. Phys., 200, 661 (1999)
  20. Y. Ke, J. Lu, X. Yi, X, Zhao, and Z. Qi, J. Appl. Polym. Sci., 78, 808 (2000)
  21. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Polym. Sci.; Part B: Polym. Phys., 40, 2661 (2002)
  22. F. Li, J. Ge, P. Honigfort, S. Fang, J. C. Chen, F. Harris, and S. Cheng, Polymer, 40, 4987 (1999)
  23. A. Agag and T. Takeichi, Polymer, 41, 7083 (2000)
  24. M. Hussain, R. J. Varley, Z. Mathys, Y. B. Cheng, and G. P. Simon, J. Appl. Polym. Sci., 91, 1233 (2004)
  25. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002)
  26. H. R. Fischer, L. H. Gielgens, and T. P. M. Koster, Acta. Polym., 50, 122 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  27. X. S. Petrovic, L. Javni, A. Waddong, and G.. J. Banhegyi, J. Appl. Polym. Sci., 76, 133 (2000)
  28. X. S. Petrovic, L. Javni, A. Waddong, and G.. J. Banhegyi, J. Appl. Polym. Sci., 76, 133 (2000)
  29. T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994)
  30. K. Masenelli-Varlot, E. Reynaud, G. Vigier, and J. Varlet, J. Polym. Sci.; Part B: Polym. Phys., 40, 272 (2004)
  31. J. W. Cho and D. R. Paul, Polymer, 42, 1083 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  32. J.-H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005)
  33. M.-K. Mun, J. C. Kim, and J.-H. Chang, Polym. Bull., 57, 797 (2006) https://doi.org/10.1007/s00289-006-0539-x
  34. L. Chen, S. C. Wong, and S. J. Pisharath, J. Appl. Polym. Sci., 88, 3298 (2003)
  35. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993)
  36. W. A. Curtin, J. Am. Ceram. Soc., 74, 2837 (1991)
  37. D. Shia, Y. Hui, S. D. Burnside, and E. P. Giannelis, Polym. Eng. Sci., 27, 887 (1987)